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Abstract. In this review paper we will give a presentation of the high-level ideas of [Jan97] and presenting
a simplified version of the main results and proofs.

A process which is a Brownian motion with respect to a measure P , will probably not be a Brownian
motion with respect to another measure Q. Furthermore, if X and Y are random variables which are inde-
pendent with respect to P , they may not be independent with respect to another measure Q. In this review
paper we study and describe how a Gaussian measure changes under translation by certain elements. Every
Gaussian stochastic process defines a space of functions on the index set, which we will call the Cameron-
Martin space, it is going to be this space which gives those directions in which translation are going to be
‘nice’.

Let X be a separable Fréchet space. A probability measure γ on (X ,B(X )) is said to be Gaussian if
γ ◦ f−1 is a Gaussian measure in R for every f ∈ X ∗. We also define the mean aγ and the covariance Kγ of
γ by

aγ(f) :=

∫
f(x)γ(dx)

Kγ(f, g) :=

∫
|f(x)− aγ(f)||g(x)− aγ(g)|γ(dx)

Observe that f 7−→ aγ(f), (f, g) 7−→ Kγ(f, g) are linear and bilinear in X ∗ respectively, moreover it
can also be proven that a and K are continuous when X is a Banach space, and the latter is non-negative
definite. Furthermore a pair (a,K) determines γ and its characteristic function is given by

γ̂(f) = exp{ia(f)− 1

2
K(f, f)} , f ∈ X ∗

We will say tat γ is centered when aγ = 0, in that case the bilinear form Kγ is the restriction of the inner
product in L2(X , γ) to X ∗. Concretely, there is a canonical embedding I∗ : X ∗ ↪→ L2(X , γ), and the closure
of I∗(X ) in L2(X , γ) is called the space of measurable linear functionals, denoted by X ∗γ .

In the following it will be more convenient to consider I∗ as an embedding I∗ : X ∗ ↪→ X ∗γ . The dual
operator I : X ∗γ ↪→ X is defined by a natural relation

(f, Iz) = (I∗f, z)X∗
γ

= E(f,X)z(X) ,∀ f ∈ X ∗ , z ∈ X ∗γ
where X is a Gaussian vector having measure γ. Under usual assumptions it can be proven that this

operator exists.

1



1. The Cameron-Martin space

We now introduce the Cameron-Martin space.

Definition 1.1. For every h ∈ X set

|h|H := sup{f(h) | f ∈ X∗ , ||I∗(f)||L2(X ,γ) ≤ 1}
The Cameron-Martin space is defined by

H := {h ∈ X | |h|H <∞}

Observe that

||h||X = sup{f(h) | ||f ||∗X ≤ 1} ≤ sup{f(h) | ||I∗f ||L2(X ,γ) ≤ c} ≤ c|h|H
where c is the norm of I∗, so H is continuously embedded in X . We know that this embedding is moreover

compact (for a proof see Theorem 2.4.7 in [Bog15]) and we shall see that the norms || · ||X , and | · |H are not
equivalent in H.

Theorem 1.1. Let γ be a Gaussian measure in a separable Banach space X , and let H be its Cameron-
Martin space. The following statements hold
(i) The unit ball BH(0, 1) of H is relatively compact in X and hence the embedding H ↪→ X is compact.
(ii) H is the intersection of all Borel full measure subspaces of X .
(iii) If X ∗γ is infinte dimensional, then γ(H) = 0

The Cameron-Martin space is a Hilbert space and moreover a reproducible kernel Hilbert space. Notice
that if γ is non-degenerate then two different elements of X ∗ define two different elements of X ∗γ , but if γ is
degenerate two different elements of X ∗ may define elements coinciding γ-a.e.

We define the operator Rγ : X ∗γ 7−→ (X∗)′ by

Rγf(g) :=

∫
f(x)[g(x)− aγ(g)]γ(dx) , f ∈ X ∗γ , g ∈ X ∗

Observe that

Rγf(g) = 〈f, g − aγ(g)〉L2(X ,γ)(1)

It is important to notice that indeed Rγ maps X ∗γ into X , see Theorem 3.2.3 in [Bog15].

Theorem 1.2. An element h ∈ X belongs to H if and only if there is ĥ ∈ X ∗γ such that h = Rγ ĥ. In this
case,

|h|H = ||ĥ||L2(X ,γ)

Therefore Rγ : X∗γ 7−→ H is an isometry and H is a Hilbert space with the inner product

[Rγh,Rγk]H := 〈ĥ, k̂〉L2(X ,γ)

Proof. If |h|H <∞, we define the map L : I ∗ (X ∗) 7−→ R setting

L(I∗f) := f(h) ∀ f ∈ X ∗

Such map is well defined since the estimate

|f(h)| ≤ ||I∗f ||L2(X ,γ)|h|H(2)

implies that if I∗f1 = I∗f2, then f1(h) = f2(h). The map L is also continuous with respect to the
L2 topology by the previous estimate (2). Then L can be continuously extended to X∗γ ; by the Riesz
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representation theorem there is a unique ĥ ∈ X ∗γ such that the extension (which we still denote by L) is
given by

L(φ) =

∫
φ(x)ĥ(x)γ(dx) ∀φ ∈ X ∗γ

In particular, for any f ∈ X ∗,

f(h) = L(I∗f) =

∫
I∗f(x)ĥ(x)γ(dx) = f(Rγ ĥ)

therefore Rγ ĥ = h and

|h|H = sup{f(h) | f ∈ X ∗ , ||I∗f |||f(h)| ≤ ||I∗f ||L2(X ,γ) ≤ 1} = ||ĥ|||f(h)| ≤ ||I∗f ||L2(X ,γ)|h|H

Conversely, if h = Rγ ĥ, then by (1) for all f ∈ X ∗ we have

f(h) = f(Rγ ĥ) =

∫
I∗f(x)ĥ(x)γ(dx) ≤ ||ĥ||L2(X ,γ)||I

∗f ||L2(X ,γ)

whence |h|H <∞. �

As the space L2(X , γ) is separable, hence X ∗γ being a subspace is also separable. Therefore, H, being
isometric to a separable space is separable.

Remark 1.1. An alternative approach to kernel’s construction is known as a concept of Reproducing Kernel
or Reproducing Kernel Hilbert Space. Let T be an arbitrary set, and let K : T × T 7−→ R be a non-negative
definite function (called a kernel). The space Hreproducing the kernel K is a class of functions f : T 7−→ R
.It is constructed as follows. We take a linear span of functions K(t, ·), t ∈ T ,and introduce a scalar product
by

〈K(s, ·),K(t, ·)〉 := K(s, t) , s, t,∈ T
Then H is the completion of this span with respect to the Hilbert distance. It can be proven (see section

4.3 in [Lif12]) that both constructions coincide.

The main importance of the Cameron-Martin space is that it characterises precisely those directions in
which translations leave the measure ‘quasi-invariant’ in the sense that the translated measure has the same
null sets as the original measure.

We finish this section by constructing the classical Cameron-Martin space, but we first need a factorization
result1.

Theorem 1.3. Let H be a Hilbert space and let γ be a Gaussian measure with covariance operator K. Let
J : H 7−→ H be an injective linear mapping such that factorization

K = JJ∗

holds. Then the Cameron-Martin space can be expressed as H = J(H), while the scalar product and norm
in H admit representations

〈h1, h2〉H =〈J−1h1, J−1h2〉X
|h|H =||J−1h||X

for all h1, h2 ∈ H.

1For a proof we refer to Theorem 4.1 in [Lif12]
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Example 1.1. Let X = C[0, 1] and let W be a Wiener process with measure γ and H = L2[0, 1]. We define
the operator J : H 7−→ H as

(J`)(t) =

∫ t

0

`(s)ds

Recall, by Riesz-Markov-Kakutani, that X ∗ = M[0, 1] is a space of (sign measures) on [0, 1], and J∗ :
M[0, 1] 7−→ H is given by

(J∗µ)(s) = µ[s, 1]

Then

(JJ∗µ)(t) =

∫ t

0

(J∗µ)(s)ds =

∫ t

0

µ[s, 1]ds

=

∫ 1

0

∫ 1

0

1s≤t1s≤uµ(du)ds

=

∫ 1

0

min{t, u}µ(du) = Kµ(t)

By the Factorization Theorem (1.3), the Cameron-Martin space for Wiener measure is given by

H =

{
h | h(t) =

∫ t

0

`(s)ds, ` ∈ L2[0, 1]

}
= {h ∈ AC[0, 1], h(0) = 0, h′ ∈ L2[0, 1]}

where AC denotes the class of absolutely continuous functions. The norm and scalar product are given by

|h|2H =

∫ 1

0

h′(s)ds

(h1, h2)H =

∫ 1

0

h′1(s)h′2(s)ds

2. The Cameron-Martin Theorem

In this section we will present Theorem 14.17 in [Jan97]. Instead of following the method of proof given
there, we follow [Bog15; Hai09; MR], where the main tool is Hellinger’s Theorem. For a proof we refer to
Proposition 2.12.6 in [Bog15].

Theorem 2.1 (Hellinger’s Theorem). Let µ and ν be two probability measures on a measurable space (Ω,B),
and let λ be a measure on B such that µ� λ, and ν � λ. Then the number

H(µ, ν) :=

∫ √
dµ

dλ

√
dν

dλ
dλ

is independent of λ and the following inequalities hold true:

2[1−H(µ, ν)] ≤ ||µ− ν|| ≤ 2
√

1−H(µ, ν)2

where ||µ− ν|| = ||dµdλ −
dν
dλ ||L1(λ) is the variation distance.

Hellinger’s theorem gives us a nice characterization of mutually singular measures. Note that ||µ−ν|| = 2
if and only if H(µ, ν) = 0. Let us show that this is equivalent to µ ⊥ ν. Now, H(µ, ν) = 0 if and only
if the set A = {dµdλ

dν
dλ 6= 0} verifies λ(A) = 0, hence also µ(A) = ν(A) = 0. Therefore the measurable set

E = {dµdλ = 0 , dνdλ > 0} we have µ(E) = ν(Ec) = 0. Then we have the following lemma

Lemma 2.2. µ ⊥ ν if and only if H(µ, ν) = 0, if and only if ||µ− ν|| = 2, for µ, ν probability measures.
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Let γ be a measure and h ∈ X ∗; the distribution γh defined by

γh(B) = γ(B − h)

is called a shift of γ by h. We are interested in checking the absolute continuity of γh with respect to γ.
If γh � γ then h is called admissible shift for γ. If ch is an admissible shift for γ for all c ∈ R, then we say
that h defines an admissible direction for γ.

We are interested in the case of Gaussian measures. One can essentially observe what is going on in the
finite dimensional case.

Example 2.1. Consider X = Rd. If γ = N(a,Q), then for f ∈ Rd we have

||I∗f ||L2(Rd,γ) =

∫
〈x− a, f〉2N(a,Q)(dx) = 〈Qf, f〉

and therefore |h|H is finite if and only if h ∈ Q(Rd), so H = Q(Rd) is the range of Q. If Q−1 is
invertible, h = Rγ ĥ if and only if ĥ(x) = 〈Q−1h, x〉. Moreover, if γ is non-degenerate the measures γh
defined by γh(B) = γ(B − h) are all equivalent to γ, i.e. γ � γh, and γh � γ, and γh = %hγ with

%h := exp {〈Q−1h, x〉 − 1

2
|h|2} = exp{ĥ(x)− 1

2
|h|2}

In the (general) infinite dimensional case, not every shift is an admissible one but for admissible shifts the
form of the density is exactly the same: it is an exponent of linear functional multiplied by a normalizing
quadratic constant. We start with a preliminary result.

Lemma 2.3. For any g ∈ X ∗γ , the measure

µg = exp{g − 1

2
||g||2L2(X ,γ)}γ

is a Gaussian measure with characteristic function

µ̂g(f) = exp{if(Rγg) + iaγ(f)− 1

2
||I∗f ||2L2(X ,γ)}

Proof. Notice that the image of γ under the measurable function g is still a Gaussian measure given by
N(0, ||g||2L2(X ,γ)). Then ∫

exp |g(x)|γ(dx) =

∫
e|t|N(0, ||g||2L2(X ,γ))(dt) <∞

hence exp |g| ∈ L1(X , γ) and µg is a finite measure. Moreover µg is a probability measure since

µg(X ) =

∫
exp{g − 1

2
||g||2L2(X ,γ)}γ(dx) = exp{−1

2
||g||2L2(X ,γ)}

∫
etN(0, ||g||2L2(X ,γ))(dt) = 1

Now,

exp{−1

2
||g||2L2(X ,γ)}

∫
exp {i(f(x)− tg(x))}γ(dx) = exp{−1

2
||g||2L2(X ,γ)}γ̂(f − tg)

= exp{−1

2
||g||2L2(X ,γ)} exp {iaγ(f − tg)− 1

2
||I∗(f − tg)||2L2(X ,γ)}

= exp

{
tf(Rγg)− 1− t2

2
||g||2L2(X ,γ) + iaγ(f)− 1

2
||I∗f ||2L2(X ,γ)

}
Now, the entire holomorphic functions
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z 7−→ exp{−1

2
||g||2L2(X ,γ)}

∫
exp {i(f(x)− zg(x))}γ(dx)

z 7−→ exp

{
zf(Rγg)− 1− z2

2
||g||2L2(X ,γ) + iaγ(f)− 1

2
||I∗f ||2L2(X ,γ)

}
coincide for z ∈ R, and so they coincide for all C. So with z = i we get the desired formula. �

Theorem 2.4 (Cameron-Martin Theorem2 ). For h ∈ X , denote the shift by γh. If h ∈ H the measure γ : h
is equivalent to γ and γh = %hγ, with

%h(x) := exp{ĥ(x)− 1

2
|h|2H}(3)

where ĥ = R−1γ h. If h ∈ H then γh ⊥ γ. Hence γh � γ � γh if and only if h ∈ H.

The density formula %h is referred as the Cameron-Martin formula.

Proof. For h ∈ H, let us compute the characteristic function of γh. For any f ∈ X ∗ we have

γ̂h(f) =

∫
exp {if(x)}γh(dx) =

∫
exp{if(x+ h)}γ(dx)

= exp{if(Rγ ĥ) + iaγ(f)− 1

2
||I∗f ||2L2(X ,γ)}

Then by Lemma (2.3) we get that γh = %hγ, where the density is given by the Cameron-Martin formula (3).

Now, we prove that if h /∈ H then γh ⊥ γ.For this, we first consider the 1-dimensional case. If γ is a Dirac
measure in R, then γh ⊥ γ for any h 6= 0, and ||γ − γh|| = 2. Otherwise, if γ = N(a, σ2) is a non-degenerate
Gaussian measure in R, then γ : h� γ with dγh

dγ (t) = exp{− h
2σ2

h(t−a)
σ2 }.

Now,

H(γ, γh) =

∫ √
dγ

dγ
(x) +

dγh
dγ

(x)γ(dx)

=
1

σ
√

2π

∫
exp {− h2

4σ2
+
h(x− a)

2σ2
− (x− a)2

2σ2
}dx

=
1

σ
√

2π
exp{− h2

4σ2
}
∫

exp {ht− t
2

2σ2
}dt

= exp{− h2

8σ2
} 1

σ
√

2π

∫
exp { (t− h/2)2

2σ2
}dt

= exp {−−h
2

8σ2
}

By an application of Hellinger’s Theorem (2.1), we have (in any case) that

||γ − γh|| ≥ 2

(
1− exp{−−h

2

8σ2
}
)

(4)

Returning to X , for every f ∈ X ∗, using the definition we find that γh ◦ f−1 = (γ ◦ f−1)f(h), and

||γ ◦ f−1 − (γ ◦ f−1)f(h)||R ≤ ||γ − γh||X(5)

If h /∈ H, there exists a sequence (fn) ⊆ X ∗ with ||I∗fn||L2(X ,γ) = 1 and fn(h) ≥ n. By (4), and (5) we
obtain

2Theorem 14.17 in [Jan97]
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||γ − γh||X ≥ ||γ ◦ f−1 − (γ ◦ f−1)f(h)||R ≥ 2

(
1− exp {−1

8
fn(h)2}

)
≥ 2

(
1− exp {−1

8
n2}
)

This implies that ||γ − γh|| = 2 and by Lemma (2.2) we conclude they are mutually singular.
�

It follows from the theorem that for Gaussian measures every admissible shift defines an admissible
direction.

Example 2.2. Let X = C[0, 1] and let W be a Wiener process with measure γ, and CM space H, recall
from example (1.1) that

H ={h ∈ AC[0, 1], h(0) = 0, h′ ∈ L2[0, 1]}

|h|2H =

∫ 1

0

h′(s)ds , h ∈ H

As for the functional Z associated to h by the formula Iz = h, we have that it coincides with the Wiener
integral:

Iz(t) =δt(Iz) = (I ∗ δt, z)

=EW (t)z(W ) =

(∫ 1

0

1[0,t]sdw(s) ·
∫ 1

0

h′(s)dw(s)

)
=

∫ t

0

h′(s)ds

=h(t)

Thus, z(w) =
∫ 1

0
h′(s)dw(s), and the Cameron-Martin formula reads as

dγh
dγ

(w) = exp{
∫ 1

0

h′(s)dw(s)− 1

2

∫ 1

0

h′(s)2ds}

This is the case considered by Cameron and Martin in [CM44]. For yet another proof of this case, see
Theorem 19.23 [Kal21].
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