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ABsTRACT. In this review paper we will give a presentation of the high-level ideas of [Jan97| and presenting
a simplified version of the main results and proofs.

A process which is a Brownian motion with respect to a measure P, will probably not be a Brownian
motion with respect to another measure (). Furthermore, if X and Y are random variables which are inde-
pendent with respect to P, they may not be independent with respect to another measure (). In this review
paper we study and describe how a Gaussian measure changes under translation by certain elements. Every
Gaussian stochastic process defines a space of functions on the index set, which we will call the Cameron-
Martin space, it is going to be this space which gives those directions in which translation are going to be
‘nice’.

Let X be a separable Fréchet space. A probability measure v on (X,B(X)) is said to be Gaussian if
vo f~!is a Gaussian measure in R for every f € X*. We also define the mean a. and the covariance K., of

v by

as(f) = / f(@)y(de)
K, (f.g) = / (@) — ar(Hlg@) — as () 7(de)

Observe that f — ay(f), (f,g9) — K,(f,g) are linear and bilinear in X* respectively, moreover it
can also be proven that a and K are continuous when X is a Banach space, and the latter is non-negative
definite. Furthermore a pair (a, K) determines v and its characteristic function is given by

. ) 1 X
3(f) = explialf) = SK(£ )} S € X
We will say tat «y is centered when a, = 0, in that case the bilinear form K, is the restriction of the inner
product in Lo (X, ) to X*. Concretely, there is a canonical embedding I* : X* < Ly (X, ), and the closure
of I*(X) in Ly (X, ) is called the space of measurable linear functionals, denoted by 7.

In the following it will be more convenient to consider /* as an embedding I* : X* < AXJ. The dual
operator I : X7 < X is defined by a natural relation

(f,1z) = (I*f,z)X; =E(f,X)z(X) ,VfeXx™, z€ &
where X is a Gaussian vector having measure . Under usual assumptions it can be proven that this
operator exists.



1. THE CAMERON-MARTIN SPACE
We now introduce the Cameron-Martin space.

Definition 1.1. For every h € X set

|hl g o= sup{f(h) | f € X, 1" (F)llLoce) <1}
The Cameron-Martin space is defined by

H:={heX||hlg < oo}
Observe that

IRl = sup{f(h) [ [[fl[x <1} < sup{f(h) | [[I" fllo(x ) < ¢} < clhlm

where c is the norm of I'*, so H is continuously embedded in X'. We know that this embedding is moreover
compact (for a proof see Theorem 2.4.7 in [Bogl5]) and we shall see that the norms || ||x, and |- |z are not
equivalent in H.

Theorem 1.1. Let v be a Gaussian measure in a separable Banach space X, and let H be its Cameron-
Martin space. The following statements hold

(i) The unit ball B¥(0,1) of H is relatively compact in X and hence the embedding H < X is compact.
(i) H is the intersection of all Borel full measure subspaces of X.
(i) If X is infinte dimensional, then v(H) = 0

The Cameron-Martin space is a Hilbert space and moreover a reproducible kernel Hilbert space. Notice
that if v is non-degenerate then two different elements of X* define two different elements of X7, but if 7 is
degenerate two different elements of X* may define elements coinciding v-a.e.

We define the operator R, : A7 — (X™)" by

R#@%z/ﬂ@b@%ﬂ%ﬂwm), fexs gex
Observe that

(1) R’Yf(g) = <fvg - a’y(g)>]L2(X,’y)
It is important to notice that indeed R, maps X7} into &', see Theorem 3.2.3 in [Bogl5].

Theorem 1.2. An element h € X belongs to H if and only if there is he XY such that h = R,yfz. In this
case,

Al = |1l e )
Therefore Ry : X3 — H is an isometry and H is a Hilbert space with the inner product
[Rfyh, Rfyk]H = <il, ]AC>]L2(X’,Y)
Proof. If |h|g < oo, we define the map L : I % (X*) — R setting

LI f) = f(h) ¥ [ € X*

Such map is well defined since the estimate

(2) ()] < T f Lo ol

implies that if I*f; = I*fo, then fi(h) = f2(h). The map L is also continuous with respect to the
Ly topology by the previous estimate (2). Then L can be continuously extended to X7; by the Riesz
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representation theorem there is a unique h e A such that the extension (which we still denote by L) is
given by

L(9) = [ @i (ds) Vo e x;

In particular, for any f € X*,

£ = L) = [ I f@hla)(dn) = F(R )
therefore Rﬂ,iz = h and

bl = sup{f(h) | f € X", [T Il FI)] < T Flliaqaen < 13 = 1PIF )] < T flleaeq b o
Conversely, if h = vaAz, then by (1) for all f € X* we have

f(h) = f(Ryh) = /I*f(w)ib(ﬂfh(dl“) < llea e Fllsx )
whence |h|g < o0. O

As the space Ly(X,7) is separable, hence X7 being a subspace is also separable. Therefore, H, being
isometric to a separable space is separable.

Remark 1.1. An alternative approach to kernel’s construction is known as a concept of Reproducing Kernel
or Reproducing Kernel Hilbert Space. Let T' be an arbitrary set, and let K : T x T — R be a non-negative
definite function (called a kernel). The space Hreproducing the kernel K is a class of functions f : T — R
At is constructed as follows. We take a linear span of functions K(t,-), t € T,and introduce a scalar product
by

(K(s,"),K(t,")):=K(s,t), s,t,€T

Then H is the completion of this span with respect to the Hilbert distance. It can be proven (see section
4.8 in [Lif12]) that both constructions coincide.

The main importance of the Cameron-Martin space is that it characterises precisely those directions in
which translations leave the measure ‘quasi-invariant’ in the sense that the translated measure has the same
null sets as the original measure.

We finish this section by constructing the classical Cameron-Martin space, but we first need a factorization
result’.

Theorem 1.3. Let H be a Hilbert space and let vy be a Gaussian measure with covariance operator K. Let
J : H —— H be an injective linear mapping such that factorization
K=JJ*

holds. Then the Cameron-Martin space can be expressed as H = J(H), while the scalar product and norm
in H admit representations

(hi,hoyr =(J  hy, T he) x
\hla =T Al x
for all hy,hs € H.

IFor a proof we refer to Theorem 4.1 in [Lif12]



Example 1.1. Let X = C[0,1] and let W be a Wiener process with measure v and H = Lo[0,1]. We define
the operator J : H — H as
/ s

Recall, by Riesz-Markov-Kakutani, that X* = MJ0,1] is a space of (sign measures) on [0,1], and J* :
M0, 1] — H is given by

(J*p)(s) = pls, 1]
Then

70 = [ (s = [ s s

1,1
:/ / ﬂsgtﬂsguﬂ(du)ds
0 0

- /O min{t, u}p(du) = Kpu(t)

By the Factorization Theorem (1.3), the Cameron-Martin space for Wiener measure is given by

H= {h|h /e )ds, £ € L[0, 1]}_{heAC’[O 1], (0) = 0,1’ € Ly[0,1]}

where AC denotes the class of absolutely continuous functions. The norm and scalar product are given by

|h|2; :/0 R (s)ds
1
(h1,ha)m :/0 hi(s)hy(s)ds

2. THE CAMERON-MARTIN THEOREM

In this section we will present Theorem 14.17 in [Jan97]. Instead of following the method of proof given
there, we follow [Bogl5; Hai09; MR], where the main tool is Hellinger’s Theorem. For a proof we refer to
Proposition 2.12.6 in [Bogl5].

Theorem 2.1 (Hellinger’s Theorem). Let i and v be two probability measures on a measurable space (2, ),
and let A be a measure on B such that p < A\, and v < \. Then the number

is independent of A\ and the following inequalities hold true:

21 = H(p,v)] < |lp —v|l <21 = H(p,v)?

where || — v|| = ||Z—’)f — 2|y () is the variation distance.

Hellinger’s theorem gives us a nice characterization of mutually singular measures. Note that |[u—v|| = 2
if and only if H(u,v) = 0. Let us show that this is equivalent to p L v. Now, H(u,v) = 0 if and only
if the set A = {g’; 4y £ 0} verifies A(A) = 0, hence also u(A) = v(A) = 0. Therefore the measurable set
E = {Z =0, % > 0} we have (E) = v(E°) = 0. Then we have the following lemma

Lemma 2.2. L v if and only if H(u,v) =0, if and only if ||p — v|| = 2, for p,v probability measures.
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Let v be a measure and h € X'*; the distribution v defined by

(B) = (B — h)

is called a shift of v by h. We are interested in checking the absolute continuity of v, with respect to ~.
If v, < v then h is called admissible shift for . If ch is an admissible shift for v for all ¢ € R, then we say
that h defines an admissible direction for ~.

We are interested in the case of Gaussian measures. One can essentially observe what is going on in the
finite dimensional case.

Example 2.1. Consider X = R?. If v = N(a,Q), then for f € R% we have

1 sy = [ o= a 02N (0. Q) = (Q1. )
and therefore |h|g is finite if and only if h € Q(R?), so H = Q(R?) is the range of Q. If Q7' is

invertible, h = R,yfz if and only if ﬁ(x) = (Q7th,z). Moreover, if v is non-degenerate the measures yp,
defined by yn(B) = v(B — h) are all equivalent to vy, i.e. v << vy, and vy, < 7y, and vy, = opy with

_ 1 . 1
on 1= e {(Q 7 h,w) — 1P} = exp{i(a) — 5 Ih%}
In the (general) infinite dimensional case, not every shift is an admissible one but for admissible shifts the

form of the density is exactly the same: it is an exponent of linear functional multiplied by a normalizing
quadratic constant. We start with a preliminary result.

Lemma 2.3. For any g € X7, the measure

1
g = exp{g — 5”9”%2(?(77)}7

is a Gaussian measure with characteristic function

o) = exp{if (Ryg) + ias (f) = 51T FI, )}

Proof. Notice that the image of v under the measurable function g is still a Gaussian measure given by
N (0, H9||i2(x,7))- Then

/ exp |g(2) |7 (dx) = / N (0, 1g1[2, ) () < 00

hence exp|g| € L1 (X, ) and g4 is a finite measure. Moreover fi, is a probability measure since

1 1
fg(X) = /GXP{Q - §‘|g||ﬂ2_,2(.}\f','y)}7(d‘r) = eXP{—§||g||n2,2(X,y)}/etN((), gll? (2.0 (dE) =1
Now,
1 , 1 )
exp{—3ll9llL,x )} | exp{i(f(z) —tg(x))}ry(de) = exp{=SlIgllL, 2., }3(f — tg)
:emﬂ*§ﬂﬂﬁﬂxw}@m{va“*W)*iﬂf(f*HMﬁﬂ&w}

1—¢? , 1, ..
—exp {1(9) ~ 25 Mol v i (1) = T AR}

Now, the entire holomorphic functions



svexp{=5lallE,x) [ exp (i(F() ~ 29(a)) 1 (do)

1—22 . 1.
Z —exp {Zf(ng) - 7“9”1}2_2(;(,7) +iay(f) = Sl f||u2_2(x,7)}

coincide for z € R, and so they coincide for all C. So with z = i we get the desired formula. |

Theorem 2.4 (Cameron-Martin Theorem? ). For h € X, denote the shift by vy,. If h € H the measure v : h
is equivalent to v and vy, = on7y, with

“ 1
3) on(w) == exp{h(x) - 5 |hl}
where h = R;lh. If h € H then 7y, L ~. Hence v, < v << v, if and only if h € H.
The density formula gy, is referred as the Cameron-Martin formula.

Proof. For h € H, let us compute the characteristic function of . For any f € X* we have

() = / exp {if (2)}ym(dr) = / exp{if (z + h)}r(de)

N 1
:eXp{if(Ryh) + Z.a'y(f) - §||I*f||ﬂ%2(x,y)}

Then by Lemma (2.3) we get that v, = o5,7, where the density is given by the Cameron-Martin formula (3).

Now, we prove that if h ¢ H then ~, L ~.For this, we first consider the 1-dimensional case. If «y is a Dirac
measure in R, then v, L v for any h # 0, and ||y — 4|| = 2. Otherwise, if v = N(a,0?) is a non-degenerate
Gaussian measure in R, then v : h < v with d“’“( t) = exp{f# h(;a) .

Now,

r—a) (v—a)?

h(
_a\/QW/eXp{_@—F 202 202 pd
1 h? ht — t2
= ﬁexp{—ﬁ}/exp{ tdt

—ex p{ 8 2 \/7/ ﬁ}dt

—h2
=exp{-¢g—5

By an application of Hellinger’s Theorem (2.1), we have (in any case) that

0 =il 22 (1- ep{- 35}
Returning to X, for every f € X*, using the definition we find that v, o f~1 = (yo f~ )f(h), and
(5) lvof = (vof smlle <llv —mllx
If h ¢ H, there exists a sequence (f,,) € X* with ||[I* fy||L,(x,) = 1 and f,(h) > n. By (4), and (5) we

obtain

2Theorem 14.17 in [Jan97]



=l 2 llvo £ = (o £l 22 (1= exp (~ 0% ) 2 2 (1= xp (o)

This implies that ||y —v3|| = 2 and by Lemma (2.2) we conclude they are mutually singular.
(]

It follows from the theorem that for Gaussian measures every admissible shift defines an admissible
direction.

Example 2.2. Let X = C[0,1] and let W be a Wiener process with measure v, and CM space H, recall
from example (1.1) that

H ={h € AC|0,1],h(0) = 0,h’ € Ls[0,1]}

1
|n|2, :/ h'(s)ds, he H
0

As for the functional Z associated to h by the formula [z = h, we have that it coincides with the Wiener
integral:

I12(t) =6:(I1z) = (I * &y, 2)

—EW (1)=(W) = ( / 0 sdu(s)- / 1 h'(s)dw<s>)

= /Ot h'(s)ds

—h(t)

Thus, z(w) = fol R (s)dw(s), and the Cameron-Martin formula reads as

dyn =e 1'5 wsf1 1/825
Pw) = el [ W) - 3 [ WGs2as)

This is the case considered by Cameron and Martin in [CM/4]. For yet another proof of this case, see
Theorem 19.23 [Kal21].
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