THE CAMERON-MARTIN THEOREM STAT 206B

ISAAC MEZA-LOPEZ UNIVERSITY OF CALIFORNIA, BERKELEY. IEOR

Abstract. In this review paper we will give a presentation of the high-level ideas of [Jan97] and presenting a simplified version of the main results and proofs.

A process which is a Brownian motion with respect to a measure P, will probably not be a Brownian motion with respect to another measure Q. Furthermore, if X and Y are random variables which are independent with respect to P, they may not be independent with respect to another measure Q. In this review paper we study and describe how a Gaussian measure changes under translation by certain elements. Every Gaussian stochastic process defines a space of functions on the index set, which we will call the Cameron-Martin space, it is going to be this space which gives those directions in which translation are going to be 'nice'.

Let \mathcal{X} be a separable Fréchet space. A probability measure γ on $(\mathcal{X}, \mathbb{B}(\mathcal{X}))$ is said to be Gaussian if $\gamma \circ f^{-1}$ is a Gaussian measure in \mathbb{R} for every $f \in \mathcal{X}^*$. We also define the mean a_{γ} and the covariance K_{γ} of γ by

$$a_{\gamma}(f) := \int f(x)\gamma(dx)$$
$$K_{\gamma}(f,g) := \int |f(x) - a_{\gamma}(f)||g(x) - a_{\gamma}(g)|\gamma(dx)$$

Observe that $f \mapsto a_{\gamma}(f)$, $(f,g) \mapsto K_{\gamma}(f,g)$ are linear and bilinear in \mathcal{X}^* respectively, moreover it can also be proven that a and K are continuous when \mathcal{X} is a Banach space, and the latter is non-negative definite. Furthermore a pair (a, K) determines γ and its characteristic function is given by

$$\hat{\gamma}(f) = \exp\{ia(f) - \frac{1}{2}K(f, f)\} \ , f \in \mathcal{X}^*$$

We will say tat γ is centered when $a_{\gamma} = 0$, in that case the bilinear form K_{γ} is the restriction of the inner product in $\mathbb{L}_2(\mathcal{X}, \gamma)$ to \mathcal{X}^* . Concretely, there is a canonical embedding $I^* : \mathcal{X}^* \hookrightarrow \mathbb{L}_2(\mathcal{X}, \gamma)$, and the closure of $I^*(\mathcal{X})$ in $\mathbb{L}_2(\mathcal{X}, \gamma)$ is called the space of *measurable linear functionals*, denoted by \mathcal{X}^*_{γ} .

In the following it will be more convenient to consider I^* as an embedding $I^* : \mathcal{X}^* \hookrightarrow \mathcal{X}^*_{\gamma}$. The dual operator $I : \mathcal{X}^*_{\gamma} \hookrightarrow \mathcal{X}$ is defined by a natural relation

$$(f, Iz) = (I^*f, z)_{\mathcal{X}^*_{\gamma}} = \mathbb{E}(f, X)z(X), \forall f \in \mathcal{X}^*, z \in \mathcal{X}^*_{\gamma}$$

where X is a Gaussian vector having measure γ . Under usual assumptions it can be proven that this operator exists.

1. The Cameron-Martin space

We now introduce the Cameron-Martin space.

Definition 1.1. For every $h \in \mathcal{X}$ set

$$|h|_H := \sup\{f(h) \mid f \in X^*, ||I^*(f)||_{\mathbb{L}_2(\mathcal{X},\gamma)} \le 1\}$$

The Cameron-Martin space is defined by

$$H := \{h \in \mathcal{X} \mid |h|_H < \infty\}$$

Observe that

$$||h||_{\mathcal{X}} = \sup\{f(h) \mid ||f||_{\mathcal{X}}^* \le 1\} \le \sup\{f(h) \mid ||I^*f||_{\mathbb{L}_2(\mathcal{X},\gamma)} \le c\} \le c|h|_{H^*}$$

where c is the norm of I^* , so H is continuously embedded in \mathcal{X} . We know that this embedding is moreover compact (for a proof see Theorem 2.4.7 in [Bog15]) and we shall see that the norms $|| \cdot ||_{\mathcal{X}}$, and $| \cdot |_{H}$ are not equivalent in H.

Theorem 1.1. Let γ be a Gaussian measure in a separable Banach space \mathcal{X} , and let H be its Cameron-Martin space. The following statements hold

(i) The unit ball $B^H(0,1)$ of H is relatively compact in \mathcal{X} and hence the embedding $H \hookrightarrow \mathcal{X}$ is compact. (ii) H is the intersection of all Borel full measure subspaces of \mathcal{X} .

(iii) If \mathcal{X}^*_{γ} is infinite dimensional, then $\gamma(H) = 0$

The Cameron-Martin space is a Hilbert space and moreover a reproducible kernel Hilbert space. Notice that if γ is non-degenerate then two different elements of \mathcal{X}^* define two different elements of \mathcal{X}^*_{γ} , but if γ is degenerate two different elements of \mathcal{X}^* may define elements coinciding γ -a.e.

We define the operator $R_{\gamma} : \mathcal{X}^*_{\gamma} \longmapsto (X^*)'$ by

$$R_{\gamma}f(g) := \int f(x)[g(x) - a_{\gamma}(g)]\gamma(dx) \ , \qquad f \in \mathcal{X}^*_{\gamma} \ , \ g \in \mathcal{X}^*$$

Observe that

(1)

$$R_{\gamma}f(g) = \langle f, g - a_{\gamma}(g) \rangle_{\mathbb{L}_{2}(\mathcal{X},\gamma)}$$

It is important to notice that indeed R_{γ} maps \mathcal{X}_{γ}^* into \mathcal{X} , see Theorem 3.2.3 in [Bog15].

Theorem 1.2. An element $h \in \mathcal{X}$ belongs to H if and only if there is $\hat{h} \in \mathcal{X}^*_{\gamma}$ such that $h = R_{\gamma}\hat{h}$. In this case,

$$|h|_H = ||h||_{\mathbb{L}_2(\mathcal{X},\gamma)}$$

Therefore $R_{\gamma}: X_{\gamma}^* \longmapsto H$ is an isometry and H is a Hilbert space with the inner product

$$[R_{\gamma}h, R_{\gamma}k]_H := \langle \hat{h}, \hat{k} \rangle_{\mathbb{L}_2(\mathcal{X}, \gamma)}$$

Proof. If $|h|_H < \infty$, we define the map $L: I * (\mathcal{X}^*) \longrightarrow \mathbb{R}$ setting

$$L(I^*f) := f(h) \ \forall \ f \in \mathcal{X}^*$$

Such map is well defined since the estimate

(2)
$$|f(h)| \le ||I^*f||_{\mathbb{L}_2(\mathcal{X},\gamma)}|h|_H$$

implies that if $I^*f_1 = I^*f_2$, then $f_1(h) = f_2(h)$. The map L is also continuous with respect to the \mathbb{L}_2 topology by the previous estimate (2). Then L can be continuously extended to X^*_{γ} ; by the Riesz

representation theorem there is a unique $\hat{h} \in \mathcal{X}^*_{\gamma}$ such that the extension (which we still denote by L) is given by

$$L(\phi) = \int \phi(x)\hat{h}(x)\gamma(dx) \ \forall \phi \in \mathcal{X}_{\gamma}^{*}$$

In particular, for any $f \in \mathcal{X}^*$,

$$f(h) = L(I^*f) = \int I^*f(x)\hat{h}(x)\gamma(dx) = f(R_{\gamma}\hat{h})$$

therefore $R_{\gamma}\hat{h} = h$ and

$$|h|_{H} = \sup\{f(h) \mid f \in \mathcal{X}^{*}, \ ||I^{*}f||_{|}f(h)| \leq ||I^{*}f||_{\mathbb{L}_{2}(\mathcal{X},\gamma)} \leq 1\} = ||\hat{h}||_{|}f(h)| \leq ||I^{*}f||_{\mathbb{L}_{2}(\mathcal{X},\gamma)}|h|_{H}$$

Conversely, if $h = R_{\gamma}\hat{h}$, then by (1) for all $f \in \mathcal{X}^*$ we have

$$f(h) = f(R_{\gamma}\hat{h}) = \int I^* f(x)\hat{h}(x)\gamma(dx) \le ||\hat{h}||_{\mathbb{L}_2(\mathcal{X},\gamma)}||I^*f||_{\mathbb{L}_2(\mathcal{X},\gamma)}$$

whence $|h|_H < \infty$.

As the space $\mathbb{L}_2(\mathcal{X}, \gamma)$ is separable, hence \mathcal{X}^*_{γ} being a subspace is also separable. Therefore, H, being isometric to a separable space is separable.

Remark 1.1. An alternative approach to kernel's construction is known as a concept of Reproducing Kernel or Reproducing Kernel Hilbert Space. Let T be an arbitrary set, and let $K : T \times T \mapsto \mathbb{R}$ be a non-negative definite function (called a kernel). The space H reproducing the kernel K is a class of functions $f : T \mapsto \mathbb{R}$. It is constructed as follows. We take a linear span of functions $K(t, \cdot)$, $t \in T$, and introduce a scalar product by

$$\langle K(s,\cdot),K(t,\cdot)\rangle:=K(s,t)\;,\quad s,t,\in T$$

Then H is the completion of this span with respect to the Hilbert distance. It can be proven (see section 4.3 in [Lif12]) that both constructions coincide.

The main importance of the Cameron-Martin space is that it characterises precisely those directions in which translations leave the measure 'quasi-invariant' in the sense that the translated measure has the same null sets as the original measure.

We finish this section by constructing the classical Cameron-Martin space, but we first need a factorization result¹.

Theorem 1.3. Let \mathcal{H} be a Hilbert space and let γ be a Gaussian measure with covariance operator K. Let $J: \mathcal{H} \mapsto \mathcal{H}$ be an injective linear mapping such that factorization

$$K = JJ^*$$

holds. Then the Cameron-Martin space can be expressed as $H = J(\mathcal{H})$, while the scalar product and norm in H admit representations

$$\langle h_1, h_2 \rangle_H = \langle J^{-1}h_1, J^{-1}h_2 \rangle_{\mathcal{X}}$$

$$|h|_H = ||J^{-1}h||_{\mathcal{X}}$$

for all $h_1, h_2 \in H$.

¹For a proof we refer to Theorem 4.1 in [Lif12]

Example 1.1. Let $\mathcal{X} = C[0,1]$ and let W be a Wiener process with measure γ and $\mathcal{H} = \mathbb{L}_2[0,1]$. We define the operator $J : \mathcal{H} \mapsto \mathcal{H}$ as

$$(J\ell)(t) = \int_0^t \ell(s) ds$$

Recall, by Riesz-Markov-Kakutani, that $\mathcal{X}^* = \mathbb{M}[0,1]$ is a space of (sign measures) on [0,1], and $J^* : \mathbb{M}[0,1] \mapsto \mathcal{H}$ is given by

$$(J^*\mu)(s) = \mu[s,1]$$

Then

$$(JJ^*\mu)(t) = \int_0^t (J^*\mu)(s)ds = \int_0^t \mu[s,1]ds$$
$$= \int_0^1 \int_0^1 \mathbb{1}_{s \le t} \mathbb{1}_{s \le u} \mu(du)ds$$
$$= \int_0^1 \min\{t,u\}\mu(du) = K\mu(t)$$

By the Factorization Theorem (1.3), the Cameron-Martin space for Wiener measure is given by

$$H = \left\{ h \mid h(t) = \int_0^t \ell(s) ds, \ell \in \mathbb{L}_2[0, 1] \right\} = \{ h \in AC[0, 1], h(0) = 0, h' \in \mathbb{L}_2[0, 1] \}$$

where AC denotes the class of absolutely continuous functions. The norm and scalar product are given by

$$|h|_{H}^{2} = \int_{0}^{1} h'(s) ds$$
$$(h_{1}, h_{2})_{H} = \int_{0}^{1} h'_{1}(s) h'_{2}(s) ds$$

2. The Cameron-Martin Theorem

In this section we will present Theorem 14.17 in [Jan97]. Instead of following the method of proof given there, we follow [Bog15; Hai09; MR], where the main tool is Hellinger's Theorem. For a proof we refer to Proposition 2.12.6 in [Bog15].

Theorem 2.1 (Hellinger's Theorem). Let μ and ν be two probability measures on a measurable space (Ω, \mathcal{B}) , and let λ be a measure on \mathcal{B} such that $\mu \ll \lambda$, and $\nu \ll \lambda$. Then the number

$$H(\mu,\nu):=\int \sqrt{\frac{d\mu}{d\lambda}}\sqrt{\frac{d\nu}{d\lambda}}d\lambda$$

is independent of λ and the following inequalities hold true:

$$2[1 - H(\mu, \nu)] \le ||\mu - \nu|| \le 2\sqrt{1 - H(\mu, \nu)^2}$$

where $||\mu - \nu|| = ||\frac{d\mu}{d\lambda} - \frac{d\nu}{d\lambda}||_{\mathbb{L}_1(\lambda)}$ is the variation distance.

Hellinger's theorem gives us a nice characterization of mutually singular measures. Note that $||\mu - \nu|| = 2$ if and only if $H(\mu, \nu) = 0$. Let us show that this is equivalent to $\mu \perp \nu$. Now, $H(\mu, \nu) = 0$ if and only if the set $A = \{\frac{d\mu}{d\lambda}\frac{d\nu}{d\lambda} \neq 0\}$ verifies $\lambda(A) = 0$, hence also $\mu(A) = \nu(A) = 0$. Therefore the measurable set $E = \{\frac{d\mu}{d\lambda} = 0, \frac{d\nu}{d\lambda} > 0\}$ we have $\mu(E) = \nu(E^c) = 0$. Then we have the following lemma

Lemma 2.2. $\mu \perp \nu$ if and only if $H(\mu, \nu) = 0$, if and only if $||\mu - \nu|| = 2$, for μ, ν probability measures.

Let γ be a measure and $h \in \mathcal{X}^*$; the distribution γ_h defined by

$$\gamma_h(B) = \gamma(B - h)$$

is called a shift of γ by h. We are interested in checking the absolute continuity of γ_h with respect to γ . If $\gamma_h \ll \gamma$ then h is called admissible shift for γ . If ch is an admissible shift for γ for all $c \in \mathbb{R}$, then we say that h defines an admissible direction for γ .

We are interested in the case of Gaussian measures. One can essentially observe what is going on in the finite dimensional case.

Example 2.1. Consider $\mathcal{X} = \mathbb{R}^d$. If $\gamma = N(a, Q)$, then for $f \in \mathbb{R}^d$ we have

$$||I^*f||_{\mathbb{L}_2(\mathbb{R}^d,\gamma)} = \int \langle x - a, f \rangle^2 N(a,Q)(dx) = \langle Qf, f \rangle$$

and therefore $|h|_H$ is finite if and only if $h \in Q(\mathbb{R}^d)$, so $H = Q(\mathbb{R}^d)$ is the range of Q. If Q^{-1} is invertible, $h = R_{\gamma}\hat{h}$ if and only if $\hat{h}(x) = \langle Q^{-1}h, x \rangle$. Moreover, if γ is non-degenerate the measures γ_h defined by $\gamma_h(B) = \gamma(B-h)$ are all equivalent to γ , i.e. $\gamma \ll \gamma_h$, and $\gamma_h \ll \gamma$, and $\gamma_h = \varrho_h \gamma$ with

$$\varrho_h := \exp\left\{\langle Q^{-1}h, x \rangle - \frac{1}{2}|h|^2\right\} = \exp\{\hat{h}(x) - \frac{1}{2}|h|^2\}$$

In the (general) infinite dimensional case, not every shift is an admissible one but for admissible shifts the form of the density is exactly the same: it is an exponent of linear functional multiplied by a normalizing quadratic constant. We start with a preliminary result.

Lemma 2.3. For any $g \in \mathcal{X}^*_{\gamma}$, the measure

$$\mu_g = \exp\{g - \frac{1}{2} ||g||^2_{\mathbb{L}_2(\mathcal{X},\gamma)}\}$$

is a Gaussian measure with characteristic function

$$\hat{\mu}_g(f) = \exp\{if(R_\gamma g) + ia_\gamma(f) - \frac{1}{2} ||I^*f||^2_{\mathbb{L}_2(\mathcal{X},\gamma)}\}$$

Proof. Notice that the image of γ under the measurable function g is still a Gaussian measure given by $N(0, ||g||^2_{\mathbb{L}_2(\mathcal{X},\gamma)})$. Then

$$\int \exp|g(x)|\gamma(dx) = \int e^{|t|} N(0, ||g||^2_{\mathbb{L}_2(\mathcal{X},\gamma)})(dt) < \infty$$

hence $\exp |g| \in \mathbb{L}_1(\mathcal{X}, \gamma)$ and μ_g is a finite measure. Moreover μ_g is a probability measure since

$$\mu_g(\mathcal{X}) = \int \exp\{g - \frac{1}{2} ||g||^2_{\mathbb{L}_2(\mathcal{X},\gamma)}\} \gamma(dx) = \exp\{-\frac{1}{2} ||g||^2_{\mathbb{L}_2(\mathcal{X},\gamma)}\} \int e^t N(0, ||g||^2_{\mathbb{L}_2(\mathcal{X},\gamma)})(dt) = 1$$

Now,

$$\begin{split} \exp\{-\frac{1}{2}||g||^{2}_{\mathbb{L}_{2}(\mathcal{X},\gamma)}\} \int \exp\{i(f(x) - tg(x))\}\gamma(dx) &= \exp\{-\frac{1}{2}||g||^{2}_{\mathbb{L}_{2}(\mathcal{X},\gamma)}\}\hat{\gamma}(f - tg) \\ &= \exp\{-\frac{1}{2}||g||^{2}_{\mathbb{L}_{2}(\mathcal{X},\gamma)}\}\exp\{ia_{\gamma}(f - tg) - \frac{1}{2}||I^{*}(f - tg)||^{2}_{\mathbb{L}_{2}(\mathcal{X},\gamma)}\} \\ &= \exp\left\{tf(R_{\gamma}g) - \frac{1 - t^{2}}{2}||g||^{2}_{\mathbb{L}_{2}(\mathcal{X},\gamma)} + ia_{\gamma}(f) - \frac{1}{2}||I^{*}f||^{2}_{\mathbb{L}_{2}(\mathcal{X},\gamma)}\right\} \end{split}$$

Now, the entire holomorphic functions

$$z \longmapsto \exp\{-\frac{1}{2}||g||^2_{\mathbb{L}_2(\mathcal{X},\gamma)}\} \int \exp\{i(f(x) - zg(x))\}\gamma(dx)$$
$$z \longmapsto \exp\left\{zf(R_{\gamma}g) - \frac{1 - z^2}{2}||g||^2_{\mathbb{L}_2(\mathcal{X},\gamma)} + ia_{\gamma}(f) - \frac{1}{2}||I^*f||^2_{\mathbb{L}_2(\mathcal{X},\gamma)}\right\}$$

coincide for $z \in \mathbb{R}$, and so they coincide for all \mathbb{C} . So with z = i we get the desired formula.

Theorem 2.4 (Cameron-Martin Theorem²). For $h \in \mathcal{X}$, denote the shift by γ_h . If $h \in H$ the measure $\gamma : h$ is equivalent to γ and $\gamma_h = \varrho_h \gamma$, with

(3)
$$\varrho_h(x) := \exp\{\hat{h}(x) - \frac{1}{2}|h|_H^2\}$$

where $\hat{h} = R_{\gamma}^{-1}h$. If $h \in H$ then $\gamma_h \perp \gamma$. Hence $\gamma_h \ll \gamma \ll \gamma_h$ if and only if $h \in H$.

The density formula ϱ_h is referred as the Cameron-Martin formula.

Proof. For $h \in H$, let us compute the characteristic function of γ_h . For any $f \in \mathcal{X}^*$ we have

$$\hat{\gamma}_{h}(f) = \int \exp\{if(x)\}\gamma_{h}(dx) = \int \exp\{if(x+h)\}\gamma(dx) \\ = \exp\{if(R_{\gamma}\hat{h}) + ia_{\gamma}(f) - \frac{1}{2}||I^{*}f||^{2}_{\mathbb{L}_{2}(\mathcal{X},\gamma)}\}$$

Then by Lemma (2.3) we get that $\gamma_h = \rho_h \gamma$, where the density is given by the Cameron-Martin formula (3).

Now, we prove that if $h \notin H$ then $\gamma_h \perp \gamma$. For this, we first consider the 1-dimensional case. If γ is a Dirac measure in \mathbb{R} , then $\gamma_h \perp \gamma$ for any $h \neq 0$, and $||\gamma - \gamma_h|| = 2$. Otherwise, if $\gamma = N(a, \sigma^2)$ is a non-degenerate Gaussian measure in \mathbb{R} , then $\gamma : h \ll \gamma$ with $\frac{d\gamma_h}{d\gamma}(t) = \exp\{-\frac{h}{2\sigma^2}\frac{h(t-a)}{\sigma^2}\}$.

Now,

$$\begin{split} H(\gamma,\gamma_h) &= \int \sqrt{\frac{d\gamma}{d\gamma}(x) + \frac{d\gamma_h}{d\gamma}(x)} \gamma(dx) \\ &= \frac{1}{\sigma\sqrt{2\pi}} \int \exp\left\{-\frac{h^2}{4\sigma^2} + \frac{h(x-a)}{2\sigma^2} - \frac{(x-a)^2}{2\sigma^2}\right\} dx \\ &= \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{h^2}{4\sigma^2}\} \int \exp\left\{\frac{ht-t^2}{2\sigma^2}\right\} dt \\ &= \exp\{-\frac{h^2}{8\sigma^2}\} \frac{1}{\sigma\sqrt{2\pi}} \int \exp\left\{\frac{(t-h/2)^2}{2\sigma^2}\right\} dt \\ &= \exp\left\{-\frac{-h^2}{8\sigma^2}\right\} \end{split}$$

By an application of Hellinger's Theorem (2.1), we have (in any case) that

(4)
$$||\gamma - \gamma_h|| \ge 2\left(1 - \exp\{-\frac{-h^2}{8\sigma^2}\}\right)$$

Returning to \mathcal{X} , for every $f \in \mathcal{X}^*$, using the definition we find that $\gamma_h \circ f^{-1} = (\gamma \circ f^{-1})_{f(h)}$, and

(5)
$$||\gamma \circ f^{-1} - (\gamma \circ f^{-1})_{f(h)}||_{\mathbb{R}} \le ||\gamma - \gamma_h||_{\mathcal{X}}$$

If $h \notin H$, there exists a sequence $(f_n) \subseteq \mathcal{X}^*$ with $||I^*f_n||_{\mathbb{L}_2(\mathcal{X},\gamma)} = 1$ and $f_n(h) \ge n$. By (4), and (5) we obtain

²Theorem 14.17 in [Jan 97]

$$||\gamma - \gamma_h||_{\mathcal{X}} \ge ||\gamma \circ f^{-1} - (\gamma \circ f^{-1})_{f(h)}||_{\mathbb{R}} \ge 2\left(1 - \exp\left\{-\frac{1}{8}f_n(h)^2\right\}\right) \ge 2\left(1 - \exp\left\{-\frac{1}{8}n^2\right\}\right)$$

This implies that $||\gamma - \gamma_h|| = 2$ and by Lemma (2.2) we conclude they are mutually singular.

It follows from the theorem that for Gaussian measures every admissible shift defines an admissible direction.

Example 2.2. Let $\mathcal{X} = C[0,1]$ and let W be a Wiener process with measure γ , and CM space H, recall from example (1.1) that

$$\begin{split} H = & \{h \in AC[0,1], h(0) = 0, h' \in \mathbb{L}_2[0,1] \} \\ & |h|_H^2 = \int_0^1 h'(s) ds \ , \ h \in H \end{split}$$

As for the functional Z associated to h by the formula Iz = h, we have that it coincides with the Wiener integral:

$$Iz(t) = \delta_t(Iz) = (I * \delta_t, z)$$

= $\mathbb{E}W(t)z(W) = \left(\int_0^1 \mathbb{1}_{[0,t]} s dw(s) \cdot \int_0^1 h'(s) dw(s)\right)$
= $\int_0^t h'(s) ds$
= $h(t)$

Thus, $z(w) = \int_0^1 h'(s) dw(s)$, and the Cameron-Martin formula reads as

$$\frac{d\gamma_h}{d\gamma}(w) = \exp\{\int_0^1 h'(s)dw(s) - \frac{1}{2}\int_0^1 h'(s)^2 ds\}$$

This is the case considered by Cameron and Martin in [CM44]. For yet another proof of this case, see Theorem 19.23 [Kal21].

References

- [Bog15] V.I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, American Mathematical Society, 2015.
- [CM44] R. H. Cameron and W. T. Martin, Transformations of weiner integrals under translations, Annals of Mathematics 45 (1944), no. 2, 386–396.
- [Hai09] Martin Hairer, An introduction to stochastic pdes, 2009.
- [Jan97] Svante Janson, The cameron—martin shift, Cambridge Tracts in Mathematics, p. 216–227, Cambridge University Press, 1997.
- [Kal21] Olav Kallenberg, Foundations of modern probability, third ed., Probability and its Applications (New York), Springer-Verlag, New York, 2021.
- [Lif12] M. Lifshits, Lectures on gaussian processes, SpringerBriefs in Mathematics, Springer Berlin Heidelberg, 2012.
- [MR] Stefania Maniglia and Abdelaziz Rhandi, Gaussian measures on hilbert spaces.