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Prefacio

En economía empírica y econometría, el investigador está interesado en evaluar el efecto de
una política. El principal problema que enfrenta es cómo construir un contrafactual válido.
El estándar de oro para la inferencia causal es a través de un experimento controlado aleato-
rio. Sin embargo, en muchos casos, los experimentos siguen siendo difíciles o imposibles de
implementar, por razones financieras, políticas o éticas.

El investigador utiliza una amplia variedad de estrategias para tratar de obtener una
inferencia causal a partir de datos observacionales. Un método muy popular es el método de
control sintético (SCM, por sus siglas en inglés), que esencialmente aproxima el contrafac-
tual de la unidad tratada como una combinación convexa de las unidades de control. Un
problema abierto, y área actual de investigación es cómo realizar inferencia formal en tales
estrategias de identificación. Esta tesis contribuye a esta agenda al proponer un enfoque
novedoso similar a Verosimilitud Empírica (EL, por sus siglas en íngles), para recuperar
las regiones de confianza de las estimaciones de interés. Además, las regiones de confianza
resultantes son inmunes a las formulaciones robustas de la estrategia de identificación. La
principal ventaja del procedimiento de inferencia considerado aquí, en lugar de EL, es que la
definición análoga de la función de perfil no requiere que exista una verosimilitud entre un
modelo alternativo verosimil P y la distribución empírica Pn. Es importante destacar que
la metodología presentada aquí es lo suficientemente rica y general que se puede aplicar a
otros problemas en estadística, econometría e inferencia causal; esto se puede ver como una
contribución indirecta de este trabajo.

La organización de la tesis es la siguiente: El capítulo 1 motiva el problema e introduce
el marco de la metodología de estimación. Los capítulos 2 - 3 presentan soluciones conocidas
para obtener la distribución asintótica de los pesos para el control sintético, a partir de
la cual se puede derivar la distribución asintótica del estimador del efecto del tratamiento.
Asimismo, se discuten las principales desventajas de tales enfoques. El capítulo 4 presenta
la metodología de inferencia basada en optimización robusta (DRO) y deriva los resultados
principales, proporcionando la región de confianza para el estimador de SCM. Estas regiones
de confianza se obtienen à la Manski, lo que significa que se considera el peor escenario para
un control sintético plausible. El capítulo 5, ilustra los diferentes métodos con una aplicación
empírica, retomando un artículo clásico donde se usa SCM, estableciendo formalmente la
significancia de los resultados ahí presentados. Concluimos en el Capítulo 6.



Foreword

In empirical economics and econometrics, researchers are interested in evaluating the effect
of a policy. The main problem they face is how to construct a valid counterfactual. The gold
standard for drawing inference is through a randomized controlled experiment. However, in
many cases, experiments remain difficult or impossible to implement, for financial, political,
or ethical reasons.

Researchers use a wide variety of strategies for attempting to draw causal inference from
observational data. A very popular method is the synthetic control method (SCM) which
essentially approximates the counterfactual to the treated unit as a convex combination of
the control units. An open problem, and current area of research is how to conduct formal
inference in such identification strategies. This thesis contributes to this agenda by propos-
ing a novel approach similar to Empirical Likelihood (EL), to recover confidence regions for
the estimates of interest. Moreover, the resulting confidence regions are immune to robust
formulations of the identification strategy. The main advantage of the inference procedure
considered here, contrasting EL, is that the analogue definition of the profile function does
not require the likelihood between an alternative plausible model P , and the empirical dis-
tribution, Pn, to exist. It is important to highlight that the methodology presented here is
sufficiently rich and general that can be applied to other problems in statistics, econometrics,
and causal inference - this can be viewed as a spillover contribution of this work.

The organization of the thesis is as follows: Chapter 1 motivates the problem and intro-
duces the framework of the estimation methodology. Chapters 2-3 present known solutions to
obtain the asymptotic distribution for the synthetic control weights, from which the asymp-
totic of the treatment effect estimator can be derived. The main disadvantages of such
approaches are discussed. Chapter 4 introduces the main inference methodology based on
distributionally robust optimization (DRO) and derives the main results - which gives the
confidence region for the SCM estimator. Such confidence regions are obtained à la Manski,
meaning that the worst-case scenario for a plausible synthetic control is considered. Chapter
5, illustrates the different methods with an empirical application, revisiting a classical paper
where the SCM is used, establishing formally the significance of its results. We conclude in
Chapter 6.
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Chapter 1

Synthetic control method

Synthetic control methods (SCM) are a popular approach in causal inference in comparative
studies. Essentially it constructs a weighted average of different control units as a counter-
factual from where the treatment group is to be compared. Unlike difference in differences
approaches, this method can account for the effects of confounders changing over time, by
weighting the control group to better match the treatment group before the intervention. The
main problem with this methodology is the difficulty to perform inference, this is, there is lit-
tle to none knowledge in the asymptotic distribution of the SCM estimator, or its confidence
interval. This is a very important problem to solve as a vast literature rest in this method-
ology: [ADH15; BCL+18; ADH10; AG03; PY15; BN13; AI17; CGNP13; AJK+16; RSK17].

There has also been a rich literature extending such methods: [Pow16; Xu17], nests the
additive fixed effects model with synthetic controls, permitting additional flexibility to esti-
mate causal effects in the presence of differential state level trends and shocks. To address
multiplicity of solutions with dissagregated data, [AL18; DI16] propose a synthetic control
estimator that penalizes the pairwise discrepancies between the characteristics of the treated
units and the characteristics of the units that contribute to their synthetic controls, using
regularization methods to deal with a potentially large number of possible control units.
[ASS18] provides a robust generalization of the synthetic control method by de-noising the
observation data via singular value thresholding - this renders the approach as robust. Fur-
ther, the algorithm is extended to include regularization techniques such as ridge regression
and LASSO. The paper moves beyond point estimates in establishing a Bayesian framework,
which allows one to quantitatively compute the uncertainty of the results through posterior
probabilities. [BMFR18] uses an outcome model to estimate the bias due to covariate imbal-
ance and then de-biases the original SCM estimate, analogous to bias correction for inexact
matching. In [CMM18] an artificial counterfactual is proposed based on a large-dimensional
panel of observed time-series data from a pool of untreated peers. The methodology shares
roots with the panel factor model and SCM. Finally, [Dav18] relaxes the assumption of
existence of a “perfect” synthetic control, which only occurs if the outcome variable is not
subject to transitory shocks, implementing a two-step approach which first generates pre-
dicted values of the outcome variables for each unit and uses these predicted values instead
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of the actual values of the outcome variable when constructing the synthetic control units.
This review is by no means exhaustive, but gives an illustration of the importance of the
methodology in the causal inference literature in comparative case studies.

Literature tackling this problem can be divided in two approaches, (1) those work relying
on the assumption that treatment units are randomly assigned and uses placebo, permuta-
tion tests, or some variant exploiting the panel data structure, to conduct inference - which
are called finite population approaches1 [ADH15; BCL+18; ADH10; AG03; PY15; BN13;
CGNP13; AJK+16; RSK17; Xu17; AL18; DI16; BMFR18; FP17; SV18; HS17; CWZ17], and
(2) asymptotic approaches [WHI+15; CMM18; Pow16; Li17], where the key assumptions
makes the number of individuals or time periods tend to infinity. This literature often focus
on testing hypotheses about average effects over time and require the number of pre-period
and post-treatment periods to tend to infinity.

The main disadvantage with the first approach is that the graphical analysis with place-
bos can be misleading, as placebo runs with lower expected squared prediction errors would
still be considered in the analysis. [HS17] address a setting where permutation tests may be
distorted. The validity of such tests requires a strong normality distribution assumption for
the idiosyncratic error under a factor model data generating framework. Moreover, inference
in such models is complicated by the fact that errors might exhibit intra-group and serial
correlations (few treated groups and heteroskedastic errors). [CWZ17] approach will instead
carry out the permutations over stochastic errors in the potential outcomes with respect to
time, and not the cross-sectional units. These types of permutations rely on weak depen-
dence of stochastic errors over time rather than exchangeability across treated units.

In order to demonstrate asymptotic properties, two types of asymptotic analysis are car-
ried out: one appropriate when the number of observations at each point in time in each
sub-population tends to infinity, and one suitable for stationary aggregate data and in which
the number of pre-intervention periods gets large. In this regard, [WHI+15] extends the syn-
thetic control estimator to a cross sectional setting where individual-level data is available
and derives its asymptotic distribution when the number of observed individuals goes to in-
finity. Moreover, [CMM18] propose the Artificial Counterfactual Estimator (ArCo), that is
similar in purpose to SCM, and derive its asymptotic distribution when the time dimension
is large. However, many of the problems to which the Synthetic Control Method is applied
present a cross-section dimension larger than their time dimension, making it impossible to
apply the ArCo to them. [Pow16] proposes an inference procedure that uses the gradient
of the objective function and relies on the gradient converging to a normally-distributed
random variable. This requires asymptotic normality of the estimates for the SCM. Finally,
[Li17] derives the asymptotic distribution for the ATE using projection methods, resulting

1Basically these papers compute p-values by permuting residuals - for example, [SV18] invert the test
statistic to estimate confidence sets for the treatment effect function where the hypothesis testing is carried
via a small sample inference procedure for SCM that is similar to Fisher’s Exact Hypothesis Test.
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in a non-standard asymptotic distribution. However, the analytical asymptotic distribution
is hard to obtain and so a sub-sampling method is proposed.

We add to this latter literature, focusing on the case of large number of pre-intervention
periods. The work most closely related to ours are [SV18; WHI+15; Li17].

1.1 Abadie, Diamond, and Hainmueller (ADH)
[ADH10] offer no formal inference theory. The idea behind their approach is that a mixture
of unaffected units can often provide a better comparison for the treated subject than any
single unit could alone.

The framework is based on the Rubin’s potential outcomes setup. Let there be T time
periods indexed by t = 1, . . . , T and N sub-populations indexed by n = 0, 1, . . . , N Let
an intervention occur at time period T0 affecting only group 0, the remaining groups will
constitute the control units. Let (y0

tn, y
1
tn) be the potential outcomes that would have been

observed for unit n at time t without and with exposure to treatment. So that the observed
outcome can be written as

ytn = Dtny
1
tn + (1−Dtn)y0

tn

where

Dtn =

{
1 if t ≥ T0, n = 0

0 otherwise

The difference τtn ≡ y1
tn − y0

tn for t ≥ T0 will be the treatment effect from intervention for
the unit n. The problem comes when estimating the counterfactual y0

t0 for t ≥ T0.

The key assumption in SCM is the following:

Assumption 1.1. There exists weights βn ∈ [0, 1] for n = 1, . . . , N such that

y0
t0 =

N∑
n=1

βny
0
tn

for t = 1 . . . , T and where the weights sum to one:
∑N

n=1 βn = 1.

Therefore, the ATE (for the treated unit) at t = T0 + 1 . . . , T is given by

τt = y1
t0 −

N∑
n=1

βny
0
t0

and the overall ATE is

τ =
1

T − T0 − 1

T∑
t=T0+1

τt
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The previous assumption says that the outcome of the treated sub-population can be
written as a stable weighted average of the outcomes of the control sub-populations. The ra-
tionale of imposing non-negativity restriction is that in most applications, ynt are positively
correlated with each other, and therefore they tend to move up or down together. While the
add-to-one restriction implicitly assumes that a weighted average outcomes for the control
units and the treated unit’s outcome would have followed parallel paths over time in the
absence of treatment.

Let xt ≡ (yt1, . . . , ytN)T be a vector of the control unit’s outcomes. The most straightfor-
ward estimation procedure for β is to solve the minimization problem based on the regression
model

yt0 = βTxt + ut0 t = 1, . . . , T0 (1.1)

i.e.

min

T0∑
t=1

(yt0 − βTxt)
2 (1.2)

s.t.

||β||1 = 1

βi ≥ 0 i = 1, . . . , n

We now state the necessary assumptions needed to perform inference analysis for the
SCM ATE. Through the rest of this thesis we will work under this framework, though we
only need Assumptions (1.1, 1.2, 1.3) for Chapter 4.

Assumption 1.2. The data {xt}Tt=1 follows a weakly stationary process

Assumption 1.3. {ut0}Tt=1 is zero-mean and serially uncorrelated satisfying

T
−1/2
0

T0∑
t=1

xtut0
Asy∼ N (0,Σ1)

where Σ1 = limT0→∞
1
T0

∑T0

t=1

∑T0

s=1 E[ut0us0xtx
T
s ]

Assumption 1.4. Define νt0 ≡ τt − τ + ut0. {νt0}Tt=1 is zero-mean and satisfies the limit
theorem

1√
T − T0 − 1

T∑
t=T0+1

νt0
Asy∼ N (0,Σ2)

where Σ2 = lim(T−T0−1)→∞
1

T−T0−1

∑T
t=T−T0−1

∑T
s=T−T0−1 E[νt0νs0]
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Assumption 1.5. Let wt ≡ (yt1, yt1, . . . , ytN , τtDt0) for t = 1, . . . , T , where Dt0 is the post-
treatment dummy. {wt}Tt=1 is a weakly stationary ρ-mixing process with ρ-mixing coefficients
ρ(τ) = O(λτ ) for some constant 0 < λ < 1.

These assumptions basically guarantee that the LLN holds, a central limit theorem ap-
plies to both the OLS (unrestricted) estimator for (1.1), and to a partial sum of the SCM
ATE, and that the estimator β̂ that solves (1.2) using the pre-treatment data is asymptot-
ically independent with a quantity that involves the post-treatment sample average of the
de-mean treatment effects and the idiosyncratic error. While we do not make it explicit, we
can further suppose that a consistent estimator for β exists.

Note that knowing the asymptotic behaviour for β will immediately yield the asymptotic
behaviour for the ATE τ , thus we focus on the former. In other words, provided we can derive
the asymptotic distribution of

√
T0(β̂−β), the asymptotic distribution of

√
T − T0 − 1(τ̂−τ)

can be found appealing to the following theorem due to [Li17].

Theorem 1.1. Under assumptions (1.2)-(1.5) we have√
T − T0 − 1(τ̂ − τ)

Asy∼ −ηE[xTt ]Z1 +N (0,Σ2)

where η ≡ limT0,(T−T0−1)

√
T−T0−1

T0
,
√
T0(β̂ − β)

Asy∼ Z1 is independent with N (0,Σ2), and

Σ2 = lim
(T−T0−1)→∞

1

T − T0 − 1

T∑
t=T−T0−1

T∑
s=T−T0−1

E[νt0νs0]

On the same line, if we know the confidence region for β, we can derive the confidence
region for the ATE τt. Hereafter, we thus focus on the asymptotic behaviour of

√
T0(β̂− β),

and the confidence region for β.

1.2 Doudchenko, and Imbens
In [DI16], the authors identify a common structure between several methods, which include
SCM as a special case. They later on generalize the method, allowing for a permanent addi-
tive difference between treated and control units by permitting negative weights and using
regularization2 to deal with potentially large number of possible control units.

Relaxing assumption 1.1, will allow us for a more general linear structure for the impu-
tation of the unobserved:

Assumption 1.6. There exists weights βn ∈ R for n = 1, . . . , N , and a permanent additive
difference µ ∈ R such that

y0
t0 = µ+

N∑
n=1

βny
0
tn

2This regularization can be regarded as a robust approach to a least squares estimation.
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for t = 1 . . . , T

Adding restriction to µ and β will recover several popular estimators3.

The estimators (µ̂, β̂) solve:

min

T0∑
t=1

(yt0 − µ− βTxt)
2 (1.3)

in other words, an ordinary least squares problem. This approach may be attractive
in settings where the number of pre-treatment outcomes is large relative to the number
of control units, but would be less so in cases where they are of similar magnitude. In
any case Doudchenko & Imbens recommend a need for regularization on the weights β.
Specifically they recommend to estimate the weights and intercept as an elastic-net least
squares regularization:

min||y0 − µ− βTx||22 + λ

(
1− α

2
||β||22 + α||β||1

)
(1.4)

and tune the parameters (λ, α) with Cross-Validation.

As in ADH, the way inference is performed is via permutation tests, but no formal
inference analysis is carried out4.

3For more information see [DI16]
4Recall that there is no rigorous inference theory for the synthetic control estimator if both the numbers

of treated and control units are fixed and finite, but both the pre and post-treatment periods are large.
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Chapter 2

Projection and tangent cones

2.1 Kathleen Li’s projection method
Under the same framework of the previous chapter, [Li17] uses projection methods to derive
the asymptotic distribution of the ATE. Unlike all other methodologies, the asymptotic dis-
tribution is non-normal and non-standard.

Let Λ be a convex set, consider the minimization problem:

min

T0∑
t=1

(yt0 − µ− βTxt)
2 (2.1)

s.t.

β ∈ Λ (2.2)

Letting Λ = ΛSCM = {β ∈ RN | βi ≥ 0 & ||β||1 = 1} we recover the SCM estimator.
[Li17] modifies the synthetic control method, dropping the add-to-one restriction, but

keeping the coefficients non-negative. The rationale is that the treated unit and the control
units may exhibit substantial heterogeneity and the treated unit’s outcome and a weighted
average (with weights sum to one) of the control units’ outcomes may not follow parallel
paths in the absent of treatment. So that the convex set in (2.1) is:

ΛKL = {β ∈ RN | βi ≥ 0}

Let X be the T0 ×N matrix with its ith row given by xTt . Define the projections onto a
convex set Λ as

ΠΛ,T0β = argminλ∈Λ(β − λ)T
(
XXT/T0

)
(β − λ)

ΠΛβ = argminλ∈Λ(β − λ)TE[xtx
T
t ](β − λ)

The following theorem due to [Li17] establish the asymptotic theory under this setting.
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Theorem 2.1. Let β̂P be a solution to (2.1) and β̂OLS a solution to (1.3). Let Z1 denote
the limiting distribution of

√
T0(β̂OLS − β), then

β̂P = ΠΛ,T0 β̂OLS

and √
T0(β̂P − β)

Asy∼ ΠTΛ,β

where TΛ,β := ∪α≥0α{Λ− ΠΛβ} is the tangent cone of the set Λ at β, and Λ can be either
ΛSCM or ΛKL.

Although one can use projection theory to characterize the asymptotic distribution of√
T0(β̂P − β), the inference is not straightforward as one has to know β in order to calculate

the tangent cone TΛKL,β. A straightforward solution is to plug-in the consistent estimator
for β. However, it is an open question if this guarantees desirable properties of the asymp-
totics. The asymptotic distribution of the synthetic control coefficient estimators depends
on whether the true parameters take value at the boundary or not. In practice we do not
know which constraints are binding and which are not, making it more difficult to use the
asymptotic theory for inference. Moreover, it is known that when parameters fall to the
boundary of the parameter space, the standard bootstrap method does not work: [And00].
[Li17] propose a solution to this problem by a sub-sampling method.
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Chapter 3

Generalized method of moments (GMM)

Consider M observations {Yi}Mi=1 where the Yi data is generated by a weakly stationary and
ergodic process.

The d moment conditions for a vector-valued function h(X, Y, ·) : Rd 7−→ Rd is

E[h(X, Y, θ∗)] = 0

and we further consider the null
r(θ∗) = 0

The restricted GMM estimator can be written as

θ̂ = arg min
θ

(
1

M

M∑
i=1

g(Yi, θ)

)T

ŴM

(
1

M

M∑
i=1

g(Yi, θ)

)
s.t.

r(θ) = 0

where ŴM
p−→ W and W is a positive-definite weighting matrix. Under some regularity

conditions1 the estimator is asymptotically normal2

1For this we refer to [Hal05].
2With the right choice of the weighting matrixW the estimator is also asymptotically efficient. Efficiency

is achieved when W−1 = Ω−1 = E[g(Y, θ)g(Y, θ)T], so a good candidate for ŴM is ΩM (θ)−1, where

ΩM (θ) =
1

M

M∑
i=1

g(Yi, θ)g(Yi, θ)
T

We subsequently use this as the weighting matrix.
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Theorem 3.1. Under standard regularity assumptions and where Ω−1
M

p−→ Ω−1, then

√
M(θ̂ − θ) Asy∼ N (0,ΣR)

where ΣR = Σ − ΣRT(RΣRT)−1RΣ, and Σ = (GTWG)−1 with G and R the Jacobian
matrix

G(θ) = −E[∇θg(Y, θ)] R(θ) = ∇θr(θ)

The asymptotic variance-covariance matrix of the restricted GMM estimator is always
smaller than or equal to that of the unrestricted GMM estimator, this follows since Σ−ΣR

is positive semi-definite. This result simply reflects the fact that the restricted GMM es-
timator, by incorporating more information from the restriction, is more (asymptotically)
efficient.

3.1 Inference with GMM
The computation of the weights to construct the synthetic control can be formulated as a
GMM problem:

E[(Y −XTβ)X] = 0 (3.1)
s.t.

r(β) = 0

where r : RN 7−→ R is defined as

r(β) =
[
1− ||β||1

]
We apply theorem 3.1 to produce the asymptotic behaviour of the constrained GMM

estimator.

Theorem 3.2 (GMM asymptotic variance of SCM). Under standard regularity assumptions
and where Ω−1

T0

p−→ Ω−1, then √
T0(β̂ − β)

Asy∼ N (0,ΣR)

where ΣR = Σ−ΣRT(RΣRT)−1RΣ, with Σ = E[xtx
T
t ]−1 Var[xtut]E[xtx

T
t ]−1 the heteroskedas-

ticity consistent variance estimator, and

R =
[
−eT1×N

]
with e = (1, . . . , 1)T.
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Note that this GMM estimator might be underidentified. In GMM, identification is essen-
tial. Unless parameters are identified, no consistent estimator will exist. In the next chapter,
as no uniqueness in solution is to be imposed, we can still perform asymptotic analysis.

Contrasting this inference procedure, [WHI+15] proves that the synthetic control estima-
tor is CAN under the assumption that (yt0, yt1, . . . , ytN) is ergodic and stationary.

Theorem 3.3 ([WHI+15]). Let β̂ be a solution to (3.1). Suppose that {xt} is ergodic and
stationary, and that {ytut} satisfies Gordin’s conditions3, then√

T0 − 1(β̂ − β)
D−→ N (0, CΓC)

where
C = E[xtx

T
t ]−1 − E[xtx

T
t ]−1e(eTE[xtx

T
t ]−1e)−1eTE[xtx

T
t ]−1

with e = (1, . . . , 1)T, and Γ is the long run covariance matrix4 of ut, i.e.

Γ =
∑
s

Γs

with Γs = E[utut−sxtx
T
t−s].

Stationarity and ergodicity are undoubtedly very strong restrictions. If data is nonsta-
tionary, even when imposing a parametric model as in ADH

yt0,i = δt + θtZi + λtµi + εti

where δt is an unknown common factor with constant factor loadings, Zi is a vector of
observed covariates not affected by the intervention, θt a vector of unknown parameters, λt
a vector of unobserved factors, µi a vector of unknown factor loadings, and εti unobserved
transitory shocks with zero mean - CAN cannot be directly obtained.

3See [Hay11].
4Methods for estimating Γ are well known, for example the Newey-West estimator.
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Chapter 4

Robust Wasserstein Profile Inference

This chapter is based on [BKM19]. Given an estimating equation

E [h(W ; θ)] = 0

we can consider different robust formulations that will yield a set of plausible estimates for
the parameter θ - informally this can be thought of as a confidence region for θ̂.

Formally, we will present the asymptotic properties of an object called RWP, a novel
inference methodology which extends the use of methods inspired by Empirical Likelihood
to the setting of optimal transport costs. Our originality lies in applying distributionally
robust optimization (DRO) theory to study and derive asymptotic distribution of estimators.
To our knowledge, DRO has never been used to study the asymptotics of an econometric
method.

4.1 Robust Wasserstein Profile Function
Consider the following optimization problem, which may arise in estimation of parameters
in econometrics.

min
θ:G(θ)≤0

EPTRUE [H(X, Y, θ)] (4.1)

for random elements (X, Y ) and a convex function H(X, Y, ·) defined over the convex
region {θ : G(θ) ≤ 0} and G : Rd 7→ R convex, and where PTRUE denotes the true model.
Typically the ‘true’ measure is approximated by the empirical measure Pn in which case we
will denote θ̂ERMn to any solution of (4.1) with the empirical measure.

This model may be unknown or too difficult to work with. Therefore, we introduce a
proxy P0 which provides a good trade-off between tractability and model fidelity. So we
consider the following robust optimization problem

12



min
θ:G(θ)≤0

max
Dc(P,Pn)≤λ

EP [H(X, Y, θ)] (4.2)

Here Pn is the empirical measure1, Dc is defined to be the Wasserstein distance function2

with cost c, and δ is called the distributionally uncertainty size. We will refer as θ̂DROn to
any solution of (4.2). Note that Dc(P, Pn) ≤ δ will define an uncertainty region around the
empirical model Pn, we will denote it by Uδ(Pn) = {P | Dc(P, Pn) ≤ δ}. This will ultimately
capture the uncertainty in our estimation procedure. For every plausible model P ∈ Uδ(Pn)
there is an optimal choice of parameter θ∗ such that minimizes EP [H(X, Y, θ)] . The set of
all such parameters will be denoted by

∆n(δ) := {θ(P ) : θ ∈ argminθ EP [H(X, Y, θ)] P ∈ Uδ(Pn)}

The problem now translates to finding δ such that

θ∗ ∈ ∆n(δ)

with probability at least (1− α), where α is set to be the confidence level.
Suppose that solutions to (4.1) are given by a system of equations of the form

EPn [h(X, Y, θ)] = 0

for a suitable h(·).

The Robust Wasserstein Profile (RWP) function as defined by [BKM19] is then

Rn(θ) := inf{Dc(P, Pn) : EP [h(X, Y, θ)] = 0} (4.3)

The following proposition is a key observation which will lead to the construction of
confidence region in parameter estimation.

Proposition 4.1. Let χ1−α be the (1 − α) quantile of the function Rn(θ). Then ∆n(χ1−α)
is a (1− α) confidence region for θ.

Proof. The 1− α quantile for the RWP function is given by:

χ1−α = inf{z | P (Rn(θ) ≤ z) ≥ 1− α}
1and whose weak limit is PTRUE.
2Let the cost function satisfy c(x, y) 7−→ [0,∞). Define

Dc(µ, ν) := inf
γ∈Γ(µ,ν)

∫
c(x, y)dγ(x, y)

where Γ(µ, ν) denotes the collection of all measures with marginal µ and ν on the first and second factors
respectively.
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The definition of the RWP function allows us to write ∆n(χ1−α) as

∆n(χ1−α) = {θ | Rn(θ) ≤ χ1−α}

Therefore,
P (θ ∈ ∆n(χ1−α)) = P (Rn(θ) ≤ χ1−α) = 1− α

so ∆n(χ1−α) is a (1− α) confidence region for θ.

Remark 4.1. Proposition 8 of [BKM19] establishes a min-max theorem for the DRO for-
mulation:

min
θ:G(θ)≤0

max
Dc(P,Pn)≤λ

EP [H(X, Y, θ)] = max
Dc(P,Pn)≤λ

min
θ:G(θ)≤0

EP [H(X, Y, θ)]

This indicates that θ̂DROn ∈ ∆n(δ), otherwise the left hand side of the equation above
would be strictly larger than the right hand side. Trivially, θ̂ERMn is also inside ∆n(δ). This
property is an attractive feature, as this confidence region will also include ‘Doudchenko-
Imbens’ estimators3, i.e. those who solve (1.4).

The following proposition due to [BKM19] gives a dual formulation for the RWP function,
which is useful to derive its asymptotic properties, and easier to compute as the problem
passes to have an infinite dimensional formulation to a finite dimensional one.

Theorem 4.2 ([BKM19]). Let h(·, θ) be Borel measurable, and Ω = {(u,w) ∈ Rm × Rm :
c(u,w) <∞} be Borel measurable and non empty. Further, suppose that 0 lies in the interior
of the convex hull of {h(u, θ) : u ∈ Rm}. Then,

Rn(θ) = sup
λ∈Rr

{
− 1

n

n∑
i=1

sup
u∈Rm
{λTh(u, θ)− c(u,Wi)}

}
Remark 4.2. Note that it might be computationally costly or unfeasible to derive the 1− α
quantile of the function Rn(θ∗), so instead we will focus on its asymptotic distribution.

The following theorem gives the asymptotic distribution of the RWP function

Theorem 4.3 ([BKM19]). Consider the cost function4 associated with the Wasserstein dis-
tance (and hence with the RWP function), to be

c ((x, y), (u, v)) =

{
||x− u||2 if y = v

∞ otherwise

Suppose that
3It can be proven with the techniques presented in [BKM19], that problem (1.4) can be formulated as a

DRO problem.
4As this modified cost function assigns infinite cost when y 6= v, the infimum of the RWP function is

effectively over joint distributions that do not alter the marginal distribution of Y . As a consequence, the
resulting uncertainty set Uδ(Pn) admits distributional ambiguities only with respect to the predictor variables
X.
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(i) θ∗ ∈ Rd satisfies E [h((X, Y ), θ∗)] = 0 and E||h((X, Y ), θ∗)||22 <∞

(ii) For each ζ 6= 0, the partial derivative Dxh((x, y), θ∗) exists, is continuous, and satisfies,

P (||ζTDxh((X, Y ), θ∗)||2 > 0) > 0

(iii) Assume that there exists κ̄ : Rm 7−→ [0,∞) such that

||Dxh(x+ ∆, y, θ∗)−Dxh(x, y, θ∗)||2 ≤ κ̄(x, y)||∆||2

for all ∆ ∈ Rd, and E[κ̄(X, Y )2] <∞.

Then,

nRn(θ∗)
Asy∼ R̄(2)

where

R̄(2) := sup
ζ∈Rd

{
2ζTH − E||ζTDxh((X, Y ), θ∗)||22

}
with H ∼ N (0, cov[h((X, Y ), θ∗)])

For further details in the RWP function, its properties and connection with estimating
literature, we refer to [BKM19], and [BK17], and the references therein.

It is important to mention that the attempt in this thesis is to derive the exact uncertainty
set ∆. In [BKS19] a theorem is presented giving the asymptotic normality of underlying DRO
estimators.

Theorem 4.4. Suppose that

(i) H(·) is twice continuously differentiable, non-negative, and for each (X, Y ), H(X, Y, ·)
is convex.

(ii) θ∗ ∈ Rd satisfies E [h((X, Y ), θ∗)] = 0 and E||h((X, Y ), θ∗)||22 <∞

(iii) Both E[Dθh(X, Y, θ∗)], and E[Dxh(X, Y, θ∗)Dxh(X, Y, θ∗)T] are strictly positive definite.

(iv) Assume that there exists κ, κ′, κ̄ : Rm 7−→ [0,∞) such that

||Dxh(x+ ∆, y, θ∗)−Dxh(x, y, θ∗)||2 ≤ κ(x, y)||∆||2

||Dxh(x+ ∆, y, θ∗ + u)−Dxh(x, y, θ∗)||2 ≤ κ̄(x, y) (||∆||2 + ||u||2)

||Dxh(x+ ∆, y, θ∗ + u)−Dθh(x, y, θ∗)||2 ≤ κ′(x, y) (||∆||2 + ||u||2)

and E[κ(X, Y )2] <∞, E[κ̄(X, Y )2] <∞, E[κ′(X, Y )2] <∞.
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Let E||(X, Y )||2 <∞, C := E[Dθh(X, Y, θ∗], and H ∼ N (0, cov[h((X, Y ), θ∗)]); then(√
n(θERMn − θ∗),

√
n(∆n(n−1δ)− θ∗)

) Asy∼ (
C−1H, Φ(δ) + C−1H

)
where Φ(δ) := {z | supζ{ζTCz − 1

4
E||ζTDxh(X, Y, θ∗)||2} ≤ δ}.

Note that, by the continuous mapping theorem, we have the approximation:

∆n(n−1δ) ≈ θ̂ERMn + n−1/2Φ(δ)

the following result is the basis of constructing the asymptotic confidence region.

Theorem 4.5. Let Cn be a consistent estimator of C = E[Dθh (X, Y, θ∗)], and δ(n) =
δ + o(1); then

Φn(δ(n)) := {z | sup
ζ
{ζTCnz −

1

4
EPn||ζTDxh(X, Y, θ∗)||2} ≤ δ} =⇒ Φ(δ)

We will use this results in the next section to derive the asymptotics of the SCM estima-
tor.

4.2 Inference via the RWP function
Proposition (4.1), and an application of Theorem (4.3) will be the basis to derive an exact
confidence region for β. On the other hand, Theorems (4.4), and (4.5), will give the asymp-
totic behaviour of this confidence region.

The empirical risk minimization problem that compute the synthetic control weights is:

min
β : ||β|||=1 βi≥0

EPT0
||Y −XTβ||2 (4.4)

Note that the KKT conditions are

(y − βTx)x− λe+ µ = 0

1− ||β||1 = 0

β − s2 = 0

diag(µ) diag(s) = 0

where λ ∈ R, e = (1, . . . , 1)T ∈ RN , µ = (µ1, . . . , µN)T, and s = (s1, . . . , sN).

We define h(x, y; β, λ, µ, s) : RN × R× RN+1+N+N 7−→ RN+1+N+N to be
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h(x, y, β, λ, µ, s) =


(y − βTx)x− λe+ µ

1− ||β||1
β − s2

diag(µ) diag(s)

 (4.5)

and apply Theorem 4.3 to this function, to derive our main result.

Theorem 4.6. Consider h(x, y, β, λ, µ, s) as defined by (4.5) For β ∈ RN let

RT0(β) = inf{Dc(P, PT0) : EP [h(X, Y, β, λ, µ, s] = 0}

where the cost function is

c ((x, y), (u, v)) =

{
||x− u||2 if y = v

∞ otherwise

Under the null hypothesis that the training samples {(Xi, Yi)}i are obtained independently
from a constrained model Y = β∗TX + u where ||β∗||1 = 1, and β∗i ≥ 0. The error term u
has zero mean and variance σ2, and Σ = E[XXT] is invertible. Then,

T0RT0(β∗)
Asy∼ R̄

where
R̄ = N (0, A)T

[
σ2Id− (λ∗e− µ∗)β∗T − β∗(λ∗e− µ∗)T

]−1N (0, A)

and A = σ2Σ− λ∗2eeT + λ∗eµ∗T + λ∗µ∗eT − µ∗µ∗T

Proof. To show that the RWP function converges in distribution, we verify the assumptions
of Theorem (4.3) with h(·) defined in (4.5).

Under the null hypothesis, the KKT conditions are satisfied together with the slackness
complementarity conditions, therefore

E[h(X, Y ; β∗)] =


uX − λ∗e+ µ∗

1− ||β∗||1
β∗ − s∗2

diag(µ∗) diag(s∗)

 =


0
0
0
0


and by the triangle inequality

E||h(X, Y ; β∗)||2 ≤ E[||uX||2 + ||λ∗e− µ∗||] = σ2E||X||2 + ||λ∗e− µ∗|| <∞

which is finite because the trace of the matrix Σ is finite. This verifies assumption (i).
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Now,

Dxh(x, y, β∗) =

[
uId− xβ∗T N×N

0 (2N+1)×N

]
which is clearly continuous and for any 0 6= (ζ, η) ∈ RN × R2N+1

P (||(ζ, η)TDxh(X, Y, β∗)||2 = 0) = P (uζ = ζTXβ) = 0

and thus satisfying assumption (ii). In addition,

||Dxh(x+ ∆, y, β∗)−Dxh(x, y, β∗)|| = ||β∗T∆Id−∆β∗T|| ≤ c||∆||

for some positive constant c.

As a consequence of Theorem (4.3)

T0RT0(β∗)
Asy∼ sup

(ζ,η)∈RN×R2n+1

{
2(ζ, η)TH − E||(ζ, η)T

[
uId−Xβ∗T N×N

0 (2N+1)×N

]
||2
}

Note that H ∼ N (0, cov h(X, Y ; β∗)) where

cov h(X, Y ; β∗) = E[hhT] =

[
A N×N 0

0 0

]
(2N+1)×(2N+1)

and

A = E[u2XXT + λ∗ueXT − uµ∗XT + uλ∗XeT + λ∗2eeT − λ∗µ∗eT − uXµ∗T − λ∗eµ∗T + µ∗µ∗T]

= σ2Σ− λ∗2eeT + λ∗eµ∗T + λ∗µ∗eT − µ∗µ∗T

further note that −λ∗2eeT + λ∗eµ∗T + λ ∗ µ∗eT − µ∗µ∗T is negative semi-definite.

We will ‘partition’ the distribution H as

H =
[
Z δ2N+1

]
where δ2N+1 = (δ, . . . , δ) denotes a 2N + 1-dimensional delta-distribution and Z ∼ N (0, A).

Therefore the limiting distribution can be simplified to

T0RT0(β∗)
Asy∼ sup

ζ∈RN

{
2ζTZ − E||ζT (uId−Xβ∗T)||2

}
=ZTE[(uId−Xβ∗T)(uId−Xβ∗T)T]−1Z

=ZT
[
σ2Id− (λ∗e− µ∗)β∗T − β∗(λ∗e− µ∗)T + ||β∗||2Σ

]−1Z

and it can be easily justified that
[
σ2Id− (λ∗e− µ∗)β∗T − β∗(λ∗e− µ∗)T + ||β∗||2Σ

]
is

positive definite and so invertible.
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Remark 4.3. (i) Note that as in restricted GMM, the variance of the RWP function is
less than in the unrestricted setting.

(ii) Observe that the limiting distribution is a generalized chi-squared distribution5:

Let
B = σ2Id− (λ∗e− µ∗)β∗T − β∗(λ∗e− µ∗)T + ||β∗||2Σ

and using the spectral theorem let

A
1
2B−1A

1
2 = UΛUT

be the eigendescomposition , we have that N = UTA−
1
2Z has standard normal distri-

bution. As a result

R̄ = ZTB−1Z = NTΛN =
N∑
i=1

λiN
2
i

where Λ = diag(λ1, . . . , λN).

To stress the relation of β∗ in the RWP asymptotic distribution, we will denote it as
R̄(β∗) = NTΛ(β∗)N .

(iii) As [BKM19] conjectures in a LASSO setting, one could aim to achieve lower bias
in estimation by working with the (1 − α)-quantile of the limit law R̄(β∗), instead of
that of an stochastic upper bound independent of the estimator β∗. In order to do so,
they propose to use any consistent estimator for β∗ to be plugged in the expression
for R̄. However, it is an open problem if this plug-in approach indeed enjoys better
generalization guarantees - just as in the remark of Theorem (2.1).

Recall from proposition (4.1) that a (1−α) confidence region for the parameter β is given
by

∆T0(χ1−α) = {β | RT0(β) ≤ T−1
0 χ1−α} (4.6)

where χ1−α is the (1 − α)-quantile of R̄(β̂) = NTΛ(β̂)N , and RT0(β) can be computed
as in Theorem (4.2):

5There has been some work on computing things with this distribution: [IMH61] and [Dav80] numerically
invert the characteristic function. [SO77] write the distribution as an infinite sum of central chi-squared
variables. [LTZ09] approximate it with a noncentral chi-squared distribution based on cumulant matching.
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RT0(β) = sup
λ∈RN

{
− 1

n

N∑
i=1

sup
x∈RN

{
λT(Yi − βT)x− ||x−Xi||2

}}

= sup
{λ | P is pos def }

{
− 1

n

N∑
i=1

sup
{x | Px=Yi+2Xi}

{
λT(Yi − βT)x− ||x−Xi||2

}}

with P = 2Id+ λβT + βλT.

In order to solve the inequality (4.6) we propose the following procedure6.

Consider a second order model for the RWP function RT0(β) around a consistent esti-
mator β̂. This is a fair approximation since the RWP function is convex and has a global
minimum at β̂:

RT0(β) = RT0(β̂) +∇RT
T0

(β̂)(β − β̂) +
1

2
(β − β̂)T∇2RT0(β̂)(β − β̂) +O||β − β̂||3

=
1

2
(β − β̂)T∇2RT0(β̂)(β − β̂) +O||β − β̂||3

≈ 1

2
(β − β̂)T∇2RT0(β̂)(β − β̂)

Therefore ∆T0(χ1−α) can be approximated as

∆T0(χ1−α) = {β | RT0(β) ≤ T−1
0 χ1−α}

≈ {β | 1

2
(β − β̂)T∇2RT0(β̂)(β − β̂) ≤ T−1

0 χ1−α}

This defines an ellipsoid centered at β̂ where the principal axis are determined by the
eigenvectors of the Hessian of the RWP function, and the eigenvalues are the reciprocal of
the squares of the semi-axes.

∆T0(χ1−α) ≈ {β | (β − β̂)T∇2RT0(β̂)(β − β̂) ≤ 2T−1
0 χ1−α} ⊆ B(β̂, r)

where B(β̂, r) denotes the ball centered at β̂ with radius

r =

√
2χ1−α

T0λmin(∇2R)

6Alternative one can consider to solve the inequality approximately, exploiting the convex structure of
the RWP function.
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where λmin(∇2R) denotes the minimum eigenvalue of the Hessian ∇2RT0(β̂). Finally, for
the whole sample period, the outcome yt0 is generated by

yt0 = βTxt +Dt0τt + ut0 t = 1, . . . , T0, . . . T

where Dt0 is the post-treatment dummy, and ut0 has variance σ2 so that

|τ̂t − τt| =|yt0 − ŷ0
t0 − τt| = |βTxt + τt + ut0 − β̂Txt − τt|

=|(β − β̂)Txt + ut0| ≤ |(β − β̂)Txt|+ |ut0|
≤||β − β̂|| ||xt||+ |ut0|
≤r||xt||+ σz(1−α/2)

thus, the confidence region for the ATE of the SCM estimator is given by

B
(
τ̂t, r||xt||+ σz(1−α/2)

)
while the confidence region for the overall ATE is given by

B

(
τ̂ , r

∣∣∣∣∣
∣∣∣∣∣ 1

T − T0 − 1

T∑
t=T0+1

xt

∣∣∣∣∣
∣∣∣∣∣
)

Remark 4.4. Note that this confidence regions can be interpreted à la Manski, meaning that
they were derived considering the worst-case scenario.

We can contrast this procedure with the asymptotic behaviour of the ERM estimator
and the confidence region given by Theorems 4.4 and 4.5.

Theorem 4.7. Consider the same framework of Theorem (4.6), and the definitions therein.
Then, √

T0(β̂ − β∗) Asy∼ Σ−1N (0, A)

and
∆T0(T

−1/2
0 χ1−α) ≈ β̂ + T−1

0 {z | zTΣB−1Σz ≤ χ1−α}

where χ1−α is the 1− α quantile of the RWP asymptotic function.

Lets observe that ΣB−1Σ, as a positive quadratic form, represents an ellipsoid. As before,
considering the confidence region à la Manski, we can further approximate the confidence
region for β∗ as

B

(
β̂,

√
χ1−α

T0λmin(ΣB−1Σ)

)
where λmin(ΣB−1Σ) is the minimum eigenvalue of ΣB−1Σ
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and so the confidence region for the ATE of the SCM is given by

B

(
τ̂t,

√
χ1−α

T0λmin(ΣB−1Σ)
||xt||+ σz(1−α/2)

)
while the confidence region for the overall ATE is given by

B

(
τ̂ ,

√
χ1−α

T0λmin(ΣB−1Σ)

∣∣∣∣∣
∣∣∣∣∣ 1

T − T0 − 1

T∑
t=T0+1

xt

∣∣∣∣∣
∣∣∣∣∣
)

.
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Chapter 5

Empirical example

In this chapter we illustrate and contrast the methods outlined here with an empirical appli-
cation. We revisit the classical paper [ADH10], which estimates the effect of Proposition 99,
a large-scale tobacco control program that California implemented in 1988. It uses smoking
per capita as the outcome and uses a single treated unit (California) and N = 29 states
without such anti-smoking measures as the set of potential controls. In order to conduct
inference, the authors run placebo studies by applying the synthetic control method to states
that did not implement a large-scale tobacco control program during the sample period of
study. They argue that as the estimated gap between California and its synthetic control
is “unusually large relative to the distribution of the gaps for the states in the donor pool”,
compared to placebo states and their respective synthetic control, the treatment effect is not
driven entirely by ‘chance’ and so they conclude significance. The next figure can be found
on [ADH10].

Figure 5.1: Treatment effect with placebos
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(a) Kathleen sub-sampling (b) GMM

(c) Wong GMM (d) RWP CI

(e) Asymptotic RWP CI

Figure 5.2: Analytical confidence intervals
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The figure above contrasts the different inference procedures discussed here. We note
that all methods conclude overall significance, excepting Kathleen’s sub-sampling procedure
(Panel a), and the asymptotic Wasserstein CI (Panel e). We first turn our attention to
the GMM-derived confidence intervals: It looks that the GMM CI (Panel b) - Theorem
(3.2) - is the most efficient one, and as expected the CI derived with Theorem (3.3) (Panel
c) has larger radius as it is a ‘robustification’ of Theorem (3.2). The CI derived with the
asymptotics obtained in Theorem (4.7) (Panel d) are slightly larger but similar to the one
obtained with restricted GMM, this is because we can regard the asymptotic distribution of
the ERM estimator as a constrained GMM estimator but with a different weighting matrix -
which is not optimum in terms of efficiency. Finally, (Panel d) shows the confidence interval
using the Wasserstein profile function; it shows both the ‘exact’ confidence interval and its
asymptotic approximation. (Panel e) only displays the asymptotic Wasserstein CI.
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Chapter 6

Conclusion

The main contribution of this thesis, besides the analysis of the asymptotics of the SCM esti-
mator - which is in its own a great contribution, is the introduction of the Robust Wasserstein
Profile Inference methodology. This is a novel approach, that recovers confidence region for
the estimate of interest, thus introducing a new form of making inference in statistics and
econometrics. We highlight that this approach may not be easily scalable, as it depends on
the form of the RWP function. However, a tractable approach is obtained by considering
the asymptotic Wasserstein confidence interval.

Note that the methods outlined in this work can be straightforwardly extended to in-
clude covariates to improve the estimation and inference procedure, as well as incorporate
heteroskedastic-consistent standard errors. The confidence regions are interpreted à la Man-
ski, meaning they were derived considering the worst-case scenario. This means that the
length of the confidence regions can be further tightened.

It is also worth noting that assumption (1.6) can be easily relaxed to allow for any other
functional relation, allowing for non-linearities or even non-parametric forms. The RWP
methodology is easily adapted to allow for such changes.

As in [ADH10], the computation of the weights can be simplified by considering only a
few linear combination of pre-intervention outcomes and checking whether assumption (1.2)
holds approximately for the resulting weights. Another possibility, is to modify the 2-norm
in the loss function replacing it with a norm induced by a matrix V . The choice of V can be
data-driven. One possibility is to choose V among positive definite and diagonal matrices
such that the mean squared prediction error of the outcome variable is minimized for the
pre-intervention periods (see [AG03], appendix B for details).

We want to emphasize that this methodology to recover confidence interval in SCM can
be adapted to any of the extensions mentioned in Chapter 1.

To illustrate the results of the thesis, we revisit the classic paper by [ADH10] and derived
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confidence intervals for the treatment effect by each of the methods outlined here. We see
that all methods are consistent between them, but some prove to be more efficient than
others.

An advantage of the confidence region obtained with the RWP function is that it contains
both an empirical risk minimizer and a distributionally robust minimizer - this is an attractive
feature as some SCM estimator variant, such as the proposed by [DI16] fall in this confidence
region. It is an interesting question to ask which other estimator variants also fall in this
confidence region.
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