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Abstract

A popular method in comparative case studies is the synthetic control method
(SCM). A problem in this methodology is how to conduct formal inference. This
work contributes by using a novel approach similar to Empirical Likelihood (EL),
to recover confidence regions, specifically we apply the Robust Wasserstein Profile
Inference developed in [BKM19]. The main advantage of the inference procedure
considered here, contrasting EL, is that the analogue definition of the profile
function does not require the likelihood between an alternative plausible model P ,
and the empirical distribution, Pn, to exist.

1 Synthetic control method

Synthetic control methods (SCM) are a popular approach in causal inference in comparative studies:
[ADH15; BCL+18; ADH10; AG03; PY15; BN13; AI17; CGNP13; AJK+16; RSK17]. Essentially
it constructs a weighted average of different control units as a counterfactual from where the
treatment group is to be compared. Unlike difference in differences approaches, this method can
account for the effects of confounders changing over time, by weighting the control group to better
match the treatment group before the intervention. There has also been a rich literature extending
such methods: [Pow16; Xu17; AL18; DI16; ASS18; BMFR18; Dav18]. This gives an illustration of
the importance of the methodology in the causal inference literature in comparative case studies.

The main problem with this methodology is the difficulty to perform inference, this is, there is little
to none knowledge in the asymptotic distribution of the SCM estimator, or its confidence interval.
Literature tackling this problem can be divided in two approaches, (1) those work relying on the
assumption that treatment units are randomly assigned and uses placebo, permutation tests, or some
variant exploiting the panel data structure, to conduct inference - which are called finite population
approaches1 [ADH15; BCL+18; ADH10; AG03; PY15; BN13; CGNP13; AJK+16; RSK17;
Xu17; AL18; DI16; BMFR18; FP17; SV18; HS17; CWZ17], and (2) asymptotic approaches
[WHI+15; CMM18; Pow16; Li17], where the key assumptions makes the number of individuals or
time periods tend to infinity. This literature often focus on testing hypotheses about average effects
over time and require the number of pre-period and post-treatment periods to tend to infinity.

The main disadvantage with the first approach is that the graphical analysis with placebos can be
misleading, as placebo runs with lower expected squared prediction errors would still be considered
in the analysis. [HS17] address a setting where permutation tests may be distorted. The validity of

1Basically these papers compute p-values by permuting residuals - for example, [SV18] invert the test statistic
to estimate confidence sets for the treatment effect function where the hypothesis testing is carried via a small
sample inference procedure for SCM that is similar to Fisher’s Exact Hypothesis Test.
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such tests requires a strong normality distribution assumption for the idiosyncratic error under a factor
model data generating framework. Moreover, inference in such models is complicated by the fact that
errors might exhibit intra-group and serial correlations (few treated groups and heteroskedastic errors).
[CWZ17] approach will instead carry out the permutations over stochastic errors in the potential
outcomes with respect to time, and not the cross-sectional units. These types of permutations
rely on weak dependence of stochastic errors over time rather than exchangeability across treated units.

In order to demonstrate asymptotic properties, two types of asymptotic analysis are carried out:
one appropriate when the number of observations at each point in time in each sub-population
tends to infinity, and one suitable for stationary aggregate data and in which the number of
pre-intervention periods gets large. In this regard, [WHI+15] extends the synthetic control estimator
to a cross sectional setting where individual-level data is available and derives its asymptotic
distribution when the number of observed individuals goes to infinity. Moreover, [CMM18]
propose the Artificial Counterfactual Estimator (ArCo), that is similar in purpose to SCM, and
derive its asymptotic distribution when the time dimension is large. However, many of the
problems to which the Synthetic Control Method is applied present a cross-section dimension
larger than their time dimension, making it impossible to apply the ArCo to them. [Pow16]
proposes an inference procedure that uses the gradient of the objective function and relies on
the gradient converging to a normally-distributed random variable. This requires asymptotic
normality of the estimates for the SCM. Finally, [Li17] derives the asymptotic distribution for
the ATE using projection methods, resulting in a non-standard asymptotic distribution. How-
ever, the analytical asymptotic distribution is hard to obtain and so a sub-sampling method is proposed.

We add to this latter literature, focusing on the case of large number of pre-intervention periods. The
work most closely related to ours are [SV18; WHI+15; Li17].

2 SCM

The framework is based on the Rubin’s potential outcomes setup. Let there be T time periods indexed
by t = 1, . . . , T and N sub-populations indexed by n = 0, 1, . . . , N Let an intervention occur at
time period T0 affecting only group 0, the remaining groups will constitute the control units. Let
(y0tn, y

1
tn) be the potential outcomes that would have been observed for unit n at time t without and

with exposure to treatment. So that the observed outcome can be written as

ytn = Dtny
1
tn + (1−Dtn)y0tn

where

Dtn =

{
1 if t ≥ T0, n = 0

0 otherwise

The difference τtn ≡ y1tn − y0tn for t ≥ T0 will be the treatment effect from intervention for the unit
n. The problem comes when estimating the counterfactual y0t0 for t ≥ T0.

The key assumption in SCM is the following:

Assumption 1. There exists weights βn ∈ [0, 1] for n = 1, . . . , N such that

y0t0 =

N∑
n=1

βny
0
tn

for t = 1 . . . , T and where the weights sum to one:
∑N
n=1 βn = 1.

Therefore, the ATE (for the treated unit) at t = T0 + 1 . . . , T is given by

τt = y1t0 −
N∑
n=1

βny
0
t0
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and the overall ATE is

τ =
1

T − T0 − 1

T∑
t=T0+1

τt

Let xt ≡ (yt1, . . . , ytN )T be a vector of the control unit’s outcomes. The most straightforward
estimation procedure for β is to solve the minimization problem based on the regression model

yt0 = βTxt + ut0 t = 1, . . . , T0 (1)

i.e.

min

T0∑
t=1

(yt0 − βTxt)
2 (2)

s.t.

||β||1 = 1

βi ≥ 0 i = 1, . . . , n

3 Robust Wasserstein Profile Inference

Consider the following optimization problem, which may arise in estimation of parameters in
econometrics.

min
θ:G(θ)≤0

EPTRUE [H(X,Y, θ)] (3)

for random elements (X,Y ) and a convex function H(X,Y, ·) defined over the convex region
{θ : G(θ) ≤ 0} and G : Rd 7→ R convex, and where PTRUE denotes the true model. Typically the
‘true’ measure is approximated by the empirical measure Pn in which case we will denote θ̂ERMn to
any solution of (3) with the empirical measure.

This model may be unknown or too difficult to work with. Therefore, we introduce a proxy P0 which
provides a good trade-off between tractability and model fidelity. So we consider the following robust
optimization problem

min
θ:G(θ)≤0

max
Dc(P,Pn)≤λ

EP [H(X,Y, θ)] (4)

Here Pn is the empirical measure2, Dc is defined to be the Wasserstein distance function3 with cost
c, and δ is called the distributionally uncertainty size. We will refer as θ̂DROn to any solution of (4).
Note that Dc(P, Pn) ≤ δ will define an uncertainty region around the empirical model Pn, we will
denote it by Uδ(Pn) = {P | Dc(P, Pn) ≤ δ}. This will ultimately capture the uncertainty in our
estimation procedure. For every plausible model P ∈ Uδ(Pn) there is an optimal choice of parameter
θ∗ such that minimizes EP [H(X,Y, θ)] . The set of all such parameters will be denoted by

2and whose weak limit is PTRUE.
3Let the cost function satisfy c(x, y) 7−→ [0,∞). Define

Dc(µ, ν) := inf
γ∈Γ(µ,ν)

∫
c(x, y)dγ(x, y)

where Γ(µ, ν) denotes the collection of all measures with marginal µ and ν on the first and second factors
respectively.
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∆n(δ) := {θ(P ) : θ ∈ argminθ EP [H(X,Y, θ)] P ∈ Uδ(Pn)}

The problem now translates to finding δ such that

θ∗ ∈ ∆n(δ)

with probability at least (1− α), where α is set to be the confidence level.

Suppose that solutions to (3) are given by a system of equations of the form

EPn
[h(X,Y, θ)] = 0

for a suitable h(·).

The Robust Wasserstein Profile (RWP) function as defined by [BKM19] is then

Rn(θ) := inf{Dc(P, Pn) : EP [h(X,Y, θ)] = 0} (5)

The following proposition is a key observation which will lead to the construction of confidence
region in parameter estimation.
Proposition 1. Let χ1−α be the (1−α) quantile of the function Rn(θ). Then ∆n(χ1−α) is a (1−α)
confidence region for θ.

Proposition 8 of [BKM19] establishes a min-max theorem for the DRO formulation:

min
θ:G(θ)≤0

max
Dc(P,Pn)≤λ

EP [H(X,Y, θ)] = max
Dc(P,Pn)≤λ

min
θ:G(θ)≤0

EP [H(X,Y, θ)]

This indicates that θ̂DROn ∈ ∆n(δ), otherwise the left hand side of the equation above would be
strictly larger than the right hand side. Trivially, θ̂ERMn is also inside ∆n(δ).

The following proposition due to [BKM19] gives a dual formulation for the RWP function, which is
useful to derive its asymptotic properties, and easier to compute as the problem passes to have an
infinite dimensional formulation to a finite dimensional one.
Theorem 2 ([BKM19]). Let h(·, θ) be Borel measurable, and Ω = {(u,w) ∈ Rm×Rm : c(u,w) <
∞} be Borel measurable and non empty. Further, suppose that 0 lies in the interior of the convex
hull of {h(u, θ) : u ∈ Rm}. Then,

Rn(θ) = sup
λ∈Rr

{
− 1

n

n∑
i=1

sup
u∈Rm

{λTh(u, θ)− c(u,Wi)}

}

Note that it might be computationally costly or unfeasible to derive the 1− α quantile of the function
Rn(θ∗), so instead we will focus on its asymptotic distribution.

The following theorem gives the asymptotic distribution of the RWP function
Theorem 3 ([BKM19]). Consider the cost function4 associated with the Wasserstein distance (and
hence with the RWP function), to be

c ((x, y), (u, v)) =

{
||x− u||2 if y = v

∞ otherwise

Suppose that

(i) θ∗ ∈ Rd satisfies E [h((X,Y ), θ∗)] = 0 and E||h((X,Y ), θ∗)||22 <∞
4As this modified cost function assigns infinite cost when y 6= v, the infimum of the RWP function is

effectively over joint distributions that do not alter the marginal distribution of Y . As a consequence, the
resulting uncertainty set Uδ(Pn) admits distributional ambiguities only with respect to the predictor variables X .
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(ii) For each ζ 6= 0, the partial derivative Dxh((x, y), θ∗) exists, is continuous, and satisfies,

P (||ζTDxh((X,Y ), θ∗)||2 > 0) > 0

(iii) Assume that there exists κ̄ : Rm 7−→ [0,∞) such that

||Dxh(x+ ∆, y, θ∗)−Dxh(x, y, θ∗)||2 ≤ κ̄(x, y)||∆||2

for all ∆ ∈ Rd, and E[κ̄(X,Y )2] <∞.

Then,
nRn(θ∗)

Asy∼ R̄(2)

where

R̄(2) := sup
ζ∈Rd

{
2ζTH − E||ζTDxh((X,Y ), θ∗)||22

}
with H ∼ N (0, cov[h((X,Y ), θ∗)])

For further details in the RWP function, its properties and connection with estimating literature, we
refer to [BKM19], and [BK17], and the references therein. It is important to mention that the attempt
here is to derive the exact uncertainty set ∆. In [BKS19] a theorem is presented giving the asymptotic
normality of underlying DRO estimators, and we reproduce them in the appendix for completeness of
exposition. We will use this results in the next section to derive the asymptotics of the SCM estimator.

3.1 Inference via the RWP function

Proposition (1), and an application of Theorem (3) will be the basis to derive an exact confidence
region for β. On the other hand, Theorems (6), and (7), will give the asymptotic behaviour of this
confidence region.

The empirical risk minimization problem that compute the synthetic control weights is:

min
β : ||β|||=1 βi≥0

EPT0
||Y −XTβ||2 (6)

Note that the KKT conditions are

(y − βTx)x− λe+ µ = 0

1− ||β||1 = 0

β − s2 = 0

diag(µ) diag(s) = 0

where λ ∈ R, e = (1, . . . , 1)T ∈ RN , µ = (µ1, . . . , µN )T, and s = (s1, . . . , sN ).

We define h(x, y;β, λ, µ, s) : RN × R× RN+1+N+N 7−→ RN+1+N+N to be

h(x, y, β, λ, µ, s) =

(y − βTx)x− λe+ µ
1− ||β||1
β − s2

diag(µ) diag(s)

 (7)

and apply Theorem 3 to this function, to derive our main result.
Theorem 4. Consider h(x, y, β, λ, µ, s) as defined by (7) For β ∈ RN let

RT0
(β) = inf{Dc(P, PT0

) : EP [h(X,Y, β, λ, µ, s] = 0}
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where the cost function is

c ((x, y), (u, v)) =

{
||x− u||2 if y = v

∞ otherwise

Under the null hypothesis that the training samples {(Xi, Yi)}i are obtained independently from a
constrained model Y = β∗TX + u where ||β∗||1 = 1, and β∗i ≥ 0. The error term u has zero mean
and variance σ2, and Σ = E[XXT] is invertible. Then,

T0RT0
(β∗)

Asy∼ R̄

where
R̄ = N (0, A)T

[
σ2Id− (λ∗e− µ∗)β∗T − β∗(λ∗e− µ∗)T

]−1N (0, A)

and A = σ2Σ− λ∗2eeT + λ∗eµ∗T + λ∗µ∗eT − µ∗µ∗T

Observe that the limiting distribution is a generalized chi-squared distribution5:

Let
B = σ2Id− (λ∗e− µ∗)β∗T − β∗(λ∗e− µ∗)T + ||β∗||2Σ

and using the spectral theorem let

A
1
2B−1A

1
2 = UΛUT

be the eigen-descomposition , we have that N = UTA−
1
2Z has standard normal distribution. As a

result

R̄ = ZTB−1Z = NTΛN =

N∑
i=1

λiN
2
i

where Λ = diag(λ1, . . . , λN ).

To stress the relation of β∗ in the RWP asymptotic distribution, we will denote it as R̄(β∗) =
NTΛ(β∗)N .

As [BKM19] conjectures in a LASSO setting, one could aim to achieve lower bias in estimation by
working with the (1−α)-quantile of the limit law R̄(β∗), instead of that of an stochastic upper bound
independent of the estimator β∗. In order to do so, they propose to use any consistent estimator for
β∗ to be plugged in the expression for R̄. However, it is an open problem if this plug-in approach
indeed enjoys better generalization guarantees.

Recall from proposition (1) that a (1− α) confidence region for the parameter β is given by

∆T0
(χ1−α) = {β | RT0

(β) ≤ T−10 χ1−α} (8)

where χ1−α is the (1 − α)-quantile of R̄(β̂) = NTΛ(β̂)N , and RT0
(β) can be computed as in

Theorem (2):

RT0(β) = sup
λ∈RN

{
− 1

n

N∑
i=1

sup
x∈RN

{
λT(Yi − βT)x− ||x−Xi||2

}}

= sup
{λ | P is pos def }

{
− 1

n

N∑
i=1

sup
{x | Px=Yi+2Xi}

{
λT(Yi − βT)x− ||x−Xi||2

}}
5There has been some work on computing things with this distribution: [IMH61] and [Dav80] numerically

invert the characteristic function. [SO77] write the distribution as an infinite sum of central chi-squared variables.
[LTZ09] approximate it with a noncentral chi-squared distribution based on cumulant matching.
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with P = 2Id+ λβT + βλT.

In order to solve the inequality (8) we propose the following procedure6.

Consider a second order model for the RWP function RT0
(β) around a consistent estimator β̂. This

is a fair approximation since the RWP function is convex and has a global minimum at β̂:

RT0
(β) = RT0

(β̂) +∇RT
T0

(β̂)(β − β̂) +
1

2
(β − β̂)T∇2RT0

(β̂)(β − β̂) +O||β − β̂||3

=
1

2
(β − β̂)T∇2RT0(β̂)(β − β̂) +O||β − β̂||3

≈ 1

2
(β − β̂)T∇2RT0(β̂)(β − β̂)

Therefore ∆T0
(χ1−α) can be approximated as

∆T0(χ1−α) = {β | RT0(β) ≤ T−10 χ1−α}

≈ {β | 1

2
(β − β̂)T∇2RT0

(β̂)(β − β̂) ≤ T−10 χ1−α}

This defines an ellipsoid centered at β̂ where the principal axis are determined by the eigenvectors
of the Hessian of the RWP function, and the eigenvalues are the reciprocal of the squares of the
semi-axes.

∆T0
(χ1−α) ≈ {β | (β − β̂)T∇2RT0

(β̂)(β − β̂) ≤ 2T−10 χ1−α} ⊆ B(β̂, r)

where B(β̂, r) denotes the ball centered at β̂ with radius

r =

√
2χ1−α

T0λmin(∇2R)

where λmin(∇2R) denotes the minimum eigenvalue of the Hessian∇2RT0(β̂). Finally, for the whole
sample period, the outcome yt0 is generated by

yt0 = βTxt +Dt0τt + ut0 t = 1, . . . , T0, . . . T

where Dt0 is the post-treatment dummy, and ut0 has variance σ2 so that

|τ̂t − τt| =|yt0 − ŷ0t0 − τt| = |βTxt + τt + ut0 − β̂Txt − τt|
=|(β − β̂)Txt + ut0| ≤ |(β − β̂)Txt|+ |ut0|
≤||β − β̂|| ||xt||+ |ut0|
≤r||xt||+ σz(1−α/2)

thus, the confidence region for the ATE of the SCM estimator is given by

B
(
τ̂t, r||xt||+ σz(1−α/2)

)
We can contrast this procedure with the asymptotic behaviour of the ERM estimator and the confidence
region given by Theorems 6 and 7.

6Alternative one can consider to solve the inequality approximately, exploiting the convex structure of the
RWP function.
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Theorem 5. Consider the same framework of Theorem (4), and the definitions therein. Then,

√
T0(β̂ − β∗) Asy∼ Σ−1N (0, A)

and

∆T0
(T
−1/2
0 χ1−α) ≈ β̂ + T−10 {z | zTΣB−1Σz ≤ χ1−α}

where χ1−α is the 1− α quantile of the RWP asymptotic function.

Lets observe that ΣB−1Σ, as a positive quadratic form, represents an ellipsoid. Considering the
confidence region à la Manski, i.e. by considering the worst-case scenario, we can further approximate
the confidence region for β∗ as

B

(
β̂,

√
χ1−α

T0λmin(ΣB−1Σ)

)

where λmin(ΣB−1Σ) is the minimum eigenvalue of ΣB−1Σ

and so the confidence region for the ATE of the SCM is given by

B

(
τ̂t,

√
χ1−α

T0λmin(ΣB−1Σ)
||xt||+ σz(1−α/2)

)

4 Empirical example

In this section we illustrate the method described here with an empirical application, and contrast
it with existent methods. We revisit the classical paper [ADH10], which estimates the effect of
Proposition 99, a large-scale tobacco control program that California implemented in 1988. It uses
smoking per capita as the outcome and uses a single treated unit (California) and N = 29 states
without such anti-smoking measures as the set of potential controls. In order to conduct inference,
the authors run placebo studies by applying the synthetic control method to states that did not
implement a large-scale tobacco control program during the sample period of study. They argue
that as the estimated gap between California and its synthetic control is “unusually large relative
to the distribution of the gaps for the states in the donor pool”, compared to placebo states and
their respective synthetic control, the treatment effect is not driven entirely by ‘chance’ and so
they conclude significance. Figure 1 can be found on [ADH10]. While figure 2 contrasts different
inference procedures, together with the one presented here,. We note that all methods conclude overall
significance, excepting Kathleen’s [Li17] sub-sampling procedure (Panel a), and the asymptotic
Wasserstein CI (Panel d). We first turn our attention to the GMM-derived confidence interval in (Panel
b), which is a robustification of the Generalized Method of Moments [WHI+15]. The CI derived with
the asymptotics obtained in Theorem (5) (Panel c) are slightly larger but similar to the one obtained
with restricted GMM, this is because we can regard the asymptotic distribution of the ERM estimator
as a constrained GMM estimator but with a different weighting matrix - which is not optimum in
terms of efficiency. Finally, (Panel c) shows the confidence interval using the Wasserstein profile
function; it shows both the ‘exact’ confidence interval and its asymptotic approximation. (Panel d)
only displays the asymptotic Wasserstein confidence interval.
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Figure 1: Treatment effect with placebos

(a) Kathleen sub-sampling (b) Wong GMM

(c) RWP CI (d) Asymptotic RWP CI

Figure 2: Analytical confidence intervals

5 Conclusion

Note that the methods outlined in this work can be straightforwardly extended to include covariates
to improve the estimation and inference procedure, as well as incorporate heteroskedastic-consistent
standard errors. The confidence regions are interpreted à la Manski, meaning they were derived
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considering the worst-case scenario. This means that the length of the confidence regions can be
further tightened.

It is also worth noting that a the linear model can be easily relaxed to allow for any other functional
relation, allowing for non-linearities or even non-parametric forms. The RWP methodology is easily
adapted to allow for such changes.

As in [ADH10], the computation of the weights can be simplified by considering only a few linear
combination of pre-intervention outcomes and checking whether data follows a weakly stationary
process holds approximately for the resulting weights. Another possibility, is to modify the 2-norm in
the loss function replacing it with a norm induced by a matrix V . The choice of V can be data-driven.
One possibility is to choose V among positive definite and diagonal matrices such that the mean
squared prediction error of the outcome variable is minimized for the pre-intervention periods (see
[AG03], appendix B for details).

An advantage of the confidence region obtained with the RWP function is that it contains both an
empirical risk minimizer and a distributionally robust minimizer - this is an attractive feature as
some SCM estimator variant, such as the proposed by [DI16] fall in this confidence region. It is an
interesting question to ask which other estimator variants also fall in this confidence region.
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Appendix

Theorem 6. Suppose that

(i) H(·) is twice continuously differentiable, non-negative, and for each (X,Y ), H(X,Y, ·) is
convex.

(ii) θ∗ ∈ Rd satisfies E [h((X,Y ), θ∗)] = 0 and E||h((X,Y ), θ∗)||22 <∞

(iii) Both E[Dθh(X,Y, θ∗)], and E[Dxh(X,Y, θ∗)Dxh(X,Y, θ∗)T] are strictly positive definite.

(iv) Assume that there exists κ, κ′, κ̄ : Rm 7−→ [0,∞) such that

||Dxh(x+ ∆, y, θ∗)−Dxh(x, y, θ∗)||2 ≤ κ(x, y)||∆||2
||Dxh(x+ ∆, y, θ∗ + u)−Dxh(x, y, θ∗)||2 ≤ κ̄(x, y) (||∆||2 + ||u||2)

||Dxh(x+ ∆, y, θ∗ + u)−Dθh(x, y, θ∗)||2 ≤ κ′(x, y) (||∆||2 + ||u||2)

and E[κ(X,Y )2] <∞, E[κ̄(X,Y )2] <∞, E[κ′(X,Y )2] <∞.

Let E||(X,Y )||2 <∞, C := E[Dθh(X,Y, θ∗], and H ∼ N (0, cov[h((X,Y ), θ∗)]); then(√
n(θERMn − θ∗),

√
n(∆n(n−1δ)− θ∗)

) Asy∼ (
C−1H, Φ(δ) + C−1H

)
where Φ(δ) := {z | supζ{ζTCz − 1

4E||ζ
TDxh(X,Y, θ∗)||2} ≤ δ}.

Note that, by the continuous mapping theorem, we have the approximation:

∆n(n−1δ) ≈ θ̂ERMn + n−1/2Φ(δ)

the following result is the basis of constructing the asymptotic confidence region.
Theorem 7. Let Cn be a consistent estimator of C = E[Dθh (X,Y, θ∗)], and δ(n) = δ+ o(1); then

Φn(δ(n)) := {z | sup
ζ
{ζTCnz −

1

4
EPn ||ζTDxh(X,Y, θ∗)||2} ≤ δ} =⇒ Φ(δ)

Proof of Proposition 1. The 1− α quantile for the RWP function is given by:

χ1−α = inf{z | P (Rn(θ) ≤ z) ≥ 1− α}
The definition of the RWP function allows us to write ∆n(χ1−α) as

∆n(χ1−α) = {θ | Rn(θ) ≤ χ1−α}

Therefore,
P (θ ∈ ∆n(χ1−α)) = P (Rn(θ) ≤ χ1−α) = 1− α

so ∆n(χ1−α) is a (1− α) confidence region for θ.

Proof of Theorem 4. To show that the RWP function converges in distribution, we verify the
assumptions of Theorem (3) with h(·) defined in (7).

Under the null hypothesis, the KKT conditions are satisfied together with the slackness complemen-
tarity conditions, therefore

E[h(X,Y ;β∗)] =

 uX − λ∗e+ µ∗

1− ||β∗||1
β∗ − s∗2

diag(µ∗) diag(s∗)

 =

0
0
0
0
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and by the triangle inequality

E||h(X,Y ;β∗)||2 ≤ E[||uX||2 + ||λ∗e− µ∗||] = σ2E||X||2 + ||λ∗e− µ∗|| <∞

which is finite because the trace of the matrix Σ is finite. This verifies assumption (i).

Now,

Dxh(x, y, β∗) =

[
uId− xβ∗T N×N

0 (2N+1)×N

]
which is clearly continuous and for any 0 6= (ζ, η) ∈ RN × R2N+1

P (||(ζ, η)TDxh(X,Y, β∗)||2 = 0) = P (uζ = ζTXβ) = 0

and thus satisfying assumption (ii). In addition,

||Dxh(x+ ∆, y, β∗)−Dxh(x, y, β∗)|| = ||β∗T∆Id−∆β∗T|| ≤ c||∆||

for some positive constant c.

As a consequence of Theorem (3)

T0RT0
(β∗)

Asy∼ sup
(ζ,η)∈RN×R2n+1

{
2(ζ, η)TH − E||(ζ, η)T

[
uId−Xβ∗T N×N

0 (2N+1)×N

]
||2
}

Note that H ∼ N (0, cov h(X,Y ;β∗)) where

cov h(X,Y ;β∗) = E[hhT] =

[
A N×N 0

0 0

]
(2N+1)×(2N+1)

and

A = E[u2XXT + λ∗ueXT − uµ∗XT + uλ∗XeT + λ∗2eeT − λ∗µ∗eT − uXµ∗T − λ∗eµ∗T + µ∗µ∗T]

= σ2Σ− λ∗2eeT + λ∗eµ∗T + λ∗µ∗eT − µ∗µ∗T

further note that −λ∗2eeT + λ∗eµ∗T + λ ∗ µ∗eT − µ∗µ∗T is negative semi-definite.

We will ‘partition’ the distribution H as

H = [ Z δ2N+1 ]

where δ2N+1 = (δ, . . . , δ) denotes a 2N + 1-dimensional delta-distribution and Z ∼ N (0, A).

Therefore the limiting distribution can be simplified to

T0RT0(β∗)
Asy∼ sup

ζ∈RN

{
2ζTZ − E||ζT (uId−Xβ∗T)||2

}
=ZTE[(uId−Xβ∗T)(uId−Xβ∗T)T]−1Z

=ZT
[
σ2Id− (λ∗e− µ∗)β∗T − β∗(λ∗e− µ∗)T + ||β∗||2Σ

]−1Z
and it can be easily justified that

[
σ2Id− (λ∗e− µ∗)β∗T − β∗(λ∗e− µ∗)T + ||β∗||2Σ

]
is positive

definite and so invertible.
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