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Abstract

We give a characterization for a large class of adversarial bandits in infinite dimen-
sional spaces that achieve sublinear regret (i.e. learnable).

In this paper we explore the extension of finite arm bandits to the infinite case. Since the pioneer work
on this problem [Agr95], a growing literature has emerged with particular emphasis on Lipschitz
bandits [MCP14; LWHZ19; WYGR20; BSY11], and Gaussian bandits [SJ18; SKKS09; DKC13].
This paper focuses particularly on the case in which the decision set is a Banach Space
[SST11; BKTB16; DT14]. We exploit the geometric structure of such spaces as tools to analyze this
bandits.

Another contribution is to give an unification of Mirror Descent and Dual Averaging. In [McM11]
an equivalence between regularized dual averaging, and composite objective mirror descent is
established as instantiations of a general follow the regularized leader (FTLR) update. However, the
unification is different to the one in [JKM20], and so to the one appearing here: the difference between
mirror descent and dual averaging appears as a result of having regularizers/mirror maps which vary
over time. The unification by [McM11] is then achieved by tweaking the way the time-varying
regularizers/mirror maps are defined.

1 Adversarial Bandits in Banach spaces

Our primary object of study are going to be adversarial bandits in infinite dimensional spaces, more
precisely in a Banach space B. We denote by B∗ the dual space of B, and the evaluation functional will
be denoted by 〈·, ·〉. Consider the sequential decision problem in which the setting is the following:

1.1. For each round t ∈ [n]:

1. Learner picks xt ∈ X ⊆ B
2. Adversary picks a convex cost x∗t : X 7−→ R from a class FX
3. Learner pays cost 〈xt, x∗t 〉 := x∗t (xt) for the chosen arm

We will refer to the above setting as the adversarial bandit (X ,F). An online algorithm A is a
sequence of mappings At : F t−1

X 7−→ X , and the regret is defined by

Rn(A, x∗1, . . . , x∗n) =

n∑
t=1

〈x∗t ,At(x
∗
1:t−1)〉 − inf

x∈X

n∑
t=1

〈x∗t , x〉

The goal is to minimize regret. Associated to the regret is the concpet of the value of the problem,
which is the minimax value defined as:

Vn(X ,F) := inf
A

sup
x∗1:n∈FX

Rn(A, x∗1:n)
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We will say that an online convex problem is learnable whenever the minimax value is sublinear:

Vn(X ,F) = o(n)

Our fundamental question will be to characterize the spaces X , and F where (X ,F) is learnable.

2 Preliminaries

2.1 Convexity

The key tools in the analysis of UMD will be the geometric structure of Banach spaces, closely
related to its convexity. The modulus of convexity of a norm || · || on X is defined for ε ∈ [0, 2] by

δ||·||(ε) := inf{1− 1

2
||x+ y|| | ||x|| = ||y|| = 1 , ||x− y|| ≥ ε}

We say that the space X (and the norm) is uniformly convex if δ||·||(ε) > 0 for all ε ∈ (0, 2];
additionally we say that || · || has modulus of convexity of power type q or that it is q-uniformly
convex if there exists C > 0 so that δ||·||(ε) ≥ Cεq for all ε ∈ [0, 2].

Definition 1 (q-uniformly convex function). A function h : B 7−→ R is q-uniformly convex w.r.t. || · ||
in X ⊆ B whenever

∀x, x′ , ∀α ∈ [0, 1] , h(αx+ (1− α)x′) ≤ αh(x) + (1− α)h(x′)− α(1− α)

q
||x− x′||q

The following result gives the existence of a q-uniformly convex function in a uniformly convex
space.
Proposition 1 (Theorem 2.3 in [BGHV09]). Let (B, || · ||) be a Banach space. For q ∈ [2,∞), the
following are equivalent.

(i) (B, || · ||) is q-uniformly convex

(ii) The function f = || · ||q is q-uniformly convex

2.2 Regularizers

Definition 2 (Regularizer). Let h : X 7−→ R ∪ {∞} be a function. h is a pre-regularizer if it is
convex, lower-semicontinuous, and if cl domh = X . Moreover, if domh∗ = X ∗, with h∗(x∗) :=
supx∈X {〈x∗, x〉 − f(x)} as its convex conjugate, then h is said to be a X -regularizer
Lemma 2. Let h : X 7−→ R ∪ {∞} be a pre-regularizer; if it is q-uniformly convex, then it is a
regularizer.
Lemma 3 (Proposition 7.34 in [FHH+10]). Let f be a proper function from a Banach space B into
R ∪ {∞}. Let x ∈ B, x∗ ∈ B∗ and f∗ be the convex conjugate. The following are equivalent

(i) f(x) + f∗(x∗) = 〈x∗, x〉

(ii) x ∈ ∂f∗(x∗)

(iii) x∗ ∈ ∂f(x)

2.3 Unconditional Martingale Difference spaces

We will see that the precise geometric structure we are looking for is the so-called UMD property,
which means that B-valued martingale difference sequences are unconditional in Lp(B).
Definition 3 (Type and Cotype). A Banach Space B has martingale type p ∈ [1, 2] if there exists a
constant τ ≥ 0 such that for all finite Lp martingales (fn)Nn=1

||fN ||Lp(S;B) ≤ τ

(
||f0||pLp(S;B) +

N∑
n=1

||dfn||pLp(S;B)

) 1
p
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and we say it has type p ∈ [1, 2] whenever for all finite sequences (xn)Nn=1 and (εn)n≥1 a Rademacher
sequence, there is a constant τ ≥ 0 such that(

E

∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

εnxn

∣∣∣∣∣
∣∣∣∣∣
p) 1

p

≤ τ

(
N∑

n=1

||xn||p
) 1

p

The space B has martingale cotype q ∈ [2,∞] if there exists a constant c ≥ 0 such that for all finite
Lq martingales (fn)Nn=1(

||f0||qLq(S;B) +

N∑
n=1

||dfn||qLq(S;B)

) 1
q

≤ c ||fN ||Lq(S;B)

and we say it has cotype q ∈ [2,∞] whenever for all finite sequences (xn)Nn=1 and (εn)n≥1 a
Rademacher sequence, there is a constant c ≥ 0 such that(

N∑
n=1

||xn||q
) 1

q

≤ c

(
E

∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

εnxn

∣∣∣∣∣
∣∣∣∣∣
q) 1

q

It is known that whenever B has (martingale) type p, then it also has (martingale) type p′ ≤ p. We
then define the index type as p(B) := sup{p ∈ [1, 2] | B is of type p}, and the index cotype as
q(B) := inf{p ∈ [2,∞] | B is of cotype q} and similarly for the martingale type.

By considering Rademacher differences dfn = εnxn one sees that martingale type p (cotype q)
implies type p (cotype q). We will be interested where this two notions agree1.

As we will see, a crucial condition for learnability is when this two type concepts coincide. We then
introduce a class of spaces where they both agree.
Definition 4 ((UMD) spaces). A Banach space B is said to have the property of unconditional
martingale difference (UMD) if for all p ∈ (1,∞) there exists a finite constant β(p,B) ≥ 0 such that
the following holds:

Whenever (S,A, µ) is a σ-finite measure space, (Fn)Nn=1 a σ-finite filtration and (fn)Nn=1 a finite
martingale in Lp(S;B), then for all scalars |εn| = 1, n = 1 . . . , N we have∣∣∣∣∣

∣∣∣∣∣
N∑

n=1

εndfn

∣∣∣∣∣
∣∣∣∣∣
Lp(S;B)

≤ β

∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

dfn

∣∣∣∣∣
∣∣∣∣∣
Lp(S;B)

where dfn = fn − fn−1. If this condition holds, then B is said to be a UMD space.
Proposition 4 (Proposition 4.3.13 in [HvNVW16]). Every UMD space has a non-trivial type (which
in turn implies finite cotype), which then also implies non-trivial martingale type (and finite martingale
cotype).
Remark 1. Another important class of spaces where type and martingale type definitions agree are
the Banach lattices of type p > 1.

The importance of the previous proposition to our purposes shows up when combined with the
following Theorem characterizing spaces with non-trivial martingale type.
Theorem 5 (Theorem 19.5 in [SC06]). The following properties of a Banach space B are equivalent

(i) B is superreflexive

(ii) B is uniformly convexifiable, i.e. has an equivalent norm with δ||·||(ε) ≥ Cεq

(iii) B is of non-trivial martingale cotype q for some q.

(iv) B is of non-trivial martingale type p for some p.
1In general, it is possible to find a uniformly convex space B for which the index of type p(B) differs from

the corresponding index for the martingale type. Similarly for the cotype.
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3 Unified Mirror Descent

We extend the general class of algorithms called Unified Mirror Descent, which will also be denoted23

as (UMD), introduced in [JKM20], and which generalize Mirror Descent and Dual Averaging, to an
infinite dimensional space X .

We will give geometric conditions on the set X such that (UMD) is well defined and prove its
theoretical guarantees.

Definition 5 ((UMD) algorithm). Let h be a X -regularizer, and ξ := (ξt)t≥1 be a sequence in F .
We say that (xt, θt)t≥1 is a UMD(h, ξ) sequence if for t ≥ 1:

(i) xt = ∇h∗(θt)

(ii) For all x ∈ X , 〈θt+1 − θt + ξt, x− xt+1〉 ≥ 0

We call (xt)t≥1 and (θt)t≥1 a sequence of primal and dual iterates with dual increments (ξt)t≥1.

Given a X -regularizer h and a sequence of dual increments (ξt)t≥1, observe that the UMD(h, ξ)
iterates always exist. From the definition of regularizer, there is a point x1 ∈ X such that ∂h(x1) 6= ∅;
in other words, there exists (x1, θ1) such that X1 = ∇h∗(θ1). Then, for t ≥ 1 we define

(i) θt+1 := θt − ξt
(ii) xt+1 := ∇h∗(θt+1)

It can be proven that this corresponds to the iterates of the Dual Averaging algorithm [Xia09]. Before
we state our main results, we need one more definition where we extend the concept of Bregman
divergence to include subdifferentials.

Definition 6 (Bregman Divergence). Let h : B 7−→ R be a X -regularizer. For x0 =∈ X such
that ∂h(x0) 6= ∅, x ∈ X , and θ ∈ ∂h(x0), we define the Bregman divergence from x0 to x with
subdifferentials θ as

Dh(x, x0; θ) := h(x)− h(x0)− 〈θ, x− x0〉

4 Main results

We now state the main results of this paper.

Theorem 6. Let X ⊆ B be a closed convex symmetric4, bounded subset of a UMD space B. Then
there exists an X -regularizer, which we call h. Moreover, if (xt, θt) is a sequence of UMD(h, ζ)
iterates with ζ := (ηξt)t≥1, then for all n ≥ 1,

Rn(UMD, ζ) ≤
supx∈X Dh(x, x1; θ1)

η
+
ηp−1

p

n∑
t=1

||ξt||p∗

where p is the type of the Banach space.

The above theorem shows when a X -regularizer exists, and then, when UMD learns (X , cvx). Note
that it includes Theorem 6 in [BKTB16] , Theorem 9 in [SST11] and Corollary 4.11 in [JKM20]

Observe that if (ζ) is uniformly bounded, i.e. ||ξt||∗ ≤M for all t ≥ 1, then the value of the problem
is sublinear.

2We do not distinguish between the two abbreviations and will be clear from context which we are referring
to.

3Our main result shows this is a fortunate coincidence.
4Without loss of generality we can consider the unit ball of B, since then the Minkowski functional

ρX (x) := inf{r > 0 | x ∈ rX}

is a norm.
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Corollary 7. Let X ⊆ B be a closed convex symmetric, bounded subset of a UMD space B. If
||ξt||p∗ ≤ M for all t ≥ 1, putting η = (pD/Mn)

1
p where D := supx∈X Dh(x, x1; θ1), then the

adversarial bandit problem (X , cvx) is learnable by UMD. In particular

Rn(UMD, ζ) ≤ (pMnD)
1
p

We have a partial converse result. Denote by cvx the class of functions f : X 7−→ R such that f is
convex and non-expansive, and lin the class of functions that are linear and non-expansive.
Theorem 8. Let X ⊆ B be a closed convex symmetric, bounded subset of a UMD space B. If
Vn(X , cvx) = o(n), i.e. the adversarial bandit problem (X , cvx) is learnable, then B has non-trivial
martingale type (and thus non-trivial martingale cotype).

Moreover, we have a stronger result
Theorem 9. Let X ⊆ B be a closed convex symmetric, bounded subset of a Banach space B. If
Vn(X , cvx) = o(n), i.e. the adversarial bandit problem (X , cvx) is learnable, then B has non-trivial
martingale type (and thus non-trivial martingale cotype).

4.1 Proofs of results

Proposition 10. Let (xt, θt)t≥1 be an UMD(h, ξ) sequence. Then for all t ≥ 1,

(i) θt ∈ ∂h(xt)

(ii) θt − ξt ∈ ∂h(xt+1) and xt+1 = ∇h∗(θt − ξt)

Figure 1: Iterates of UMD

Proof. Let t ≥ 1, by definition of UMD iterates, xt = ∇h∗(θt), then by Lemma (3) θt ∈ ∂h(xt),
which establishes (i). For all x ∈ X , we deduce from θt+1 ∈ ∂h(xt+1) that

h(x)− h(xt+1) ≥ 〈θt+1, x− xt+1〉 ≥ 〈θt − ξt, x− xt+1〉
where in the last inequality we used the variational condition (ii) of UMD iterates. Then we have
that θt + ξt ∈ ∂h(xt+1), i.e. property (ii) in this proposition.

Remark 2. We can consider the following alternative definition of UMD iterates. Let Πh : X ⇒
X × F be a multi-valued prox-mapping defined as follows.

Πh(ζ) := {(x, θ) | x = ∇h∗(ζ) , θ ∈ ∂h(x) , 〈θ − ζ, x′ − x〉 ≥ 0 ,∀x′ ∈ X}
Then (xt, θt)t≥1 is a sequence of UMD(h, ξ) iterates5 if and only if

θ1 ∈∂h(x1)

(xt+1, θt+1) ∈Πh(θt − ξt) , t ≥ 1

5We know that UMD spaces are superreflexive. A problem in Fixed Point Theory asks whether superrefelxive
spaces have the fixed point property (fpp) or the weak fixed point property (w-fpp). If the answer is positive, we
can then hope for an extension of UMD iterates by generalizations of this mapping. It is interesting to ask if
such mapping is non-expansive, and since its domain is supposed to be bounded, closed, and convex, then if it
has a fixed point, and ask what the meaning of such point is in this context.
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Proof of Theorem 6. By Theorem (5) a UMD space of co-type q is isomorphic to a q-uniformly
convex space. Let || · || be the norm (of power type q) of such space. By Theorem 1, the function
h = || · ||p is q-uniformly convex, then by (2) it is an X -regularizer, so UMD(h, ξ) algorithm is well
defined. Now, for any x ∈ domh

〈ξt, xt+1 − x〉 ≤〈θt+1 − θt, x− xt+1〉
=〈θt+1, x− xt+1〉 − 〈θt, x− xt+1〉+ 〈θt, xt+1 − xt〉
= (h(x)− h(xt)− 〈θt, x− xt〉)

− (h(x)− h(xt+1)− 〈θt+1, x− xt+1〉)
− (h(xt+1)− h(xt)− 〈θt, xt+1 − xt〉)

=Dh(x, xt; θt)−Dh(x, xt+1; θt+1)−Dh(xt+1, xt; θt) (1)

where the last equality follows from the definition of Bregman divergence since, by Proposition (10)
θt ∈ ∂h(xt), and θt+1 ∈ ∂h(xt+1).

Now, from the definition of Bregman Divergence

〈ξt, xt − xt+1〉 = Dh(xt+1, xt; θt) +Dh(xt, xt+1; θt − ξt)

and the latter divergence is well defined since θt − ξt ∈ ∂h(xt+1), again by Proposition (10).
Moreover

Dh(xt, xt+1; θt − ξt) = Dh∗(θt − ξt, θt;xt) = D∗h(θt − ξt, θt)

where the first equality is a consequence of Lemma (3), and the second comes from the differentiability
of h∗. Then, combining the two previous expressions and adding to (1) gives

〈ξt, xt − x〉 ≤ Dh(x, xt; θt)−Dh(x, xt+1; θt) +Dh∗(θt − ξt, θt)

≤ Dh(x, xt; θt)−Dh(x, xt+1; θt) +
1

p
||ξt||p∗

where the last inequality follows from the q-uniformly convexity of h, and p is the type. Finally,
summing over t = 1 : n yields,

n∑
t=1

〈ξt, xt − x〉 ≤Dh(x, x1; θ1)−Dh(x, xn+1; θn) +
1

p

n∑
t=1

||ξt||p∗

≤ sup
x∈X

Dh(x, x1; θ) +
1

p

n∑
t=1

||ξt||p∗

and the result follows once we take the infimum over X in the LHS.

Lemma 11. Let X be the unit ball of B, then

sup
x∗1:n∈X∗

E

[∣∣∣∣∣
∣∣∣∣∣

n∑
t=1

εtx
∗
t

∣∣∣∣∣
∣∣∣∣∣
]

= sup
x∗1:n∈X∗

E

[
sup
x∈X

(
n∑

t=1

εt〈x∗t , x〉

)]
≤ Vn(X ,X ∗)

with (εt)
n
t=1 a Rademacher sequence.

Proof. Let Q be a distribution over X ∗n. Note that

Vn(X ,X ∗) ≥ sup
Q

inf
A

Ex∗1:n∼Q[Rn(A, x∗1:n)]

Define VQ = infA Ex∗1:n∼Q[Rn(A, x∗1:n)]. Consider the following distribution Q: fix x∗′1:n ∈ X ∗
and choose iid Rademacher random variables ε1:n. Let x∗t = εtx

∗′
t . Under this distribution, for any
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xt ∈ X , Et−1[−〈x∗t , xt〉] = −〈x∗′t , xt〉Et−1[εt] = 0. Using the definition of regret, and Q as above:

VQ ≥ inf
A

E

[
n∑

t=1

〈x∗t ,At(x
∗
1:t−1)〉

]
− E inf

x∈X

n∑
t=1

〈x∗t , x〉

= inf
A

[
n∑

t=1

EEt−1〈x∗t ,At(x
∗
1:t−1)〉

]
− E inf

x∈X

n∑
t=1

〈x∗t , x〉

=

n∑
t=1

inf
A

EEt−1〈x∗t ,At(x
∗
1:t−1)〉 − E inf

x∈X

n∑
t=1

〈x∗t , x〉

=

n∑
t=1

E
[

inf
xt∈X

Et−1〈x∗t , xt〉
]
− E inf

x∈X

n∑
t=1

〈x∗t , x〉

=−
n∑

t=1

E
[

sup
xt∈X

Et−1 − 〈x∗t , xt〉
]

+ E sup
x∈X

n∑
t=1

−〈x∗t , x〉

=E sup
x∈X

n∑
t=1

−〈εtx∗′t , x〉

Then we have

Vn(X ,X ∗) ≥ sup
Q
VQ ≥ sup

x∗′1:n

E sup
x∈X

n∑
t=1

−〈εtx∗′t , x〉 ≥ sup
x∗′1:n

E sup
x∈X

n∑
t=1

〈εtx∗′t , x〉

and the first identity in the Lemma is common and follows from Hahn-Banach.

Proof of Theorem 8. We claim that

n
1

p(B) ≤ Vn(X , cvx)

Since Vn(X , cvx) is sublinear, then 0 = limn n
−1Vn(X , cvx) ≥ limn n

1
p(B)−1 so p(B) > 1, i.e. B

has non-trivial type. By Theorem (5) it has non-trivial martingale cotype.

We now prove the claim. Without loss of generality we can consider X to be the unit ball of B.
Theorem 14 in [AR08] yields that Vn(X , cvx) = Vn(X , lin), so it is enough to consider the latter
class6.

By Theorem 3.3 and Remark 3.4 of [Pis86], there exists x∗1:n ∈ X ∗ such that for any ε1:n∣∣∣∣∣
∣∣∣∣∣

n∑
t=1

εtx
∗
t

∣∣∣∣∣
∣∣∣∣∣ ≥

(
n∑

t=1

|εt|p(B)
) 1

p(B)

= n
1

p(B)

and we conclude using Lemma (11).

Proof of Theorem 9. Following Lemma (11), and by hypothesis, we have that for any n ≥ 1, any
Rademacher sequence ε1:n, and X ∗-valued martingales (x∗t )nt=1

E

[∣∣∣∣∣
∣∣∣∣∣

n∑
t=1

εtx
∗
t

∣∣∣∣∣
∣∣∣∣∣
]
≤ Vn(X , cvx) ≤ Cn 1

r ≤ C ′(n+ 1)
1
r sup
1≤t≤n

||dx∗t ||∞

with constants C,C ′ ≥ 0 and r > 1. We conclude using Lemma 3.1 of [Pis75].

6In fact, lin = X ∗.
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5 Conclusion

We have almost characterized the spaces in which convex adversarial bandits achieve sublinear regret.
Note that all results hold verbatim if instead of UMD spaces, we consider Banach lattices of type
p > 1. Moreover, we can consider the class of spaces with non-trivial type such that the type and
martingale type index agree. What would be interesting is to characterize, in terms of geometric
properties, which spaces are those.

5.1 Future Work

There are several lines for future work. We leave out the obvious extensions like adaptive learning
rate as in [FHPF20], or acceleration like in [JKM20]. The first extension we outline is to consider
continuous time. This in spirit of the results in [BKTB16] about regret minimization in continuous
time on reflexive Banach spaces using Dual Averaging. This appears to be straightforward by
adjusting the family F to be (i) locally integrable, meaning for x∗ ∈ F and for any x ∈ X , the
map t 7−→ 〈x∗t , x〉 be Lebesgue integrable on any compact set K ⊆ [0,∞); and (ii) to be uniformly
bounded, i.e. supx∈X |〈x∗t , x〉| ≤M for all t.

The second line of future work is to give high probability bounds for the regret of UMD. Using
concentration bounds from [Pin94; Pis75].

Finally, we want to give a precise formulation of the following Conjecture.

Conjecture 1. B is UMD if and only if for a closed convex symmetric bounded subset X ⊆ B,
(X ⊆ B, cvx) is UMD-learnable.

Observe that the sufficiency is given in Theorem (6). Moreover, if (X ⊆ B, cvx) is UMD-learnable,
then it has both a non-trivial type and martingale type. We end by asking: Do the types coincide
without extra assumptions? If not, what extra conditions do we need to impose?
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